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FOREWARD

The NRL Plasma Formulary originated over twenty five years ago and
has been revised several times during this period. The guiding spirit and per-
son primarily responsible for its existence is Dr. David Book. I am indebted to
Dave for providing me with the TEX files for the Formulary and his continued
suggestions for improvement. The Formulary has been set in TEX by Dave
Book, Todd Brun, and Robert Scott. Finally, I thank readers for communicat-
ing typographical errors to me.
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NUMERICAL AND ALGEBRAIC

Gain in decibels of P2 relative to P1

G = 10 log10(P2/P1).

To within two percent

(2π)
1/2 ≈ 2.5; π

2 ≈ 10; e
3 ≈ 20; 2

10 ≈ 10
3
.

Euler-Mascheroni constant1 γ = 0.57722

Gamma Function Γ(x+ 1) = xΓ(x):

Γ(1/6) = 5.5663 Γ(3/5) = 1.4892
Γ(1/5) = 4.5908 Γ(2/3) = 1.3541
Γ(1/4) = 3.6256 Γ(3/4) = 1.2254
Γ(1/3) = 2.6789 Γ(4/5) = 1.1642
Γ(2/5) = 2.2182 Γ(5/6) = 1.1288
Γ(1/2) = 1.7725 =

√
π Γ(1) = 1.0

Binomial Theorem (good for | x |< 1 or α = positive integer):

(1 + x)α =

∞∑

k=0

(α
k

)
xk ≡ 1 + αx+

α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + . . . .

Rothe-Hagen identity2 (good for all complex x, y, z except when singular):

n∑

k=0

x

x+ kz

(x+ kz

k

) y

y + (n− k)z

(y + (n− k)z

n− k

)

=
x + y

x + y + nz

(x+ y + nz

n

)
.

Newberger’s summation formula3 [good for µ nonintegral, Re (α+ β) > −1]:

∞∑

n=−∞

(−1)nJα−γn(z)Jβ+γn(z)

n+ µ
=

π

sinµπ
Jα+γµ(z)Jβ−γµ(z).
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VECTOR IDENTITIES4

Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; I is the unit
dyad.

(1) A ·B×C = A×B ·C = B ·C×A = B×C ·A = C ·A×B = C×A ·B

(2) A × (B × C) = (C × B) × A = (A · C)B − (A · B)C

(3) A × (B × C) + B × (C × A) + C × (A × B) = 0

(4) (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)

(5) (A × B) × (C × D) = (A × B · D)C − (A × B · C)D

(6) ∇(fg) = ∇(gf) = f∇g + g∇f

(7) ∇ · (fA) = f∇ · A + A · ∇f

(8) ∇ × (fA) = f∇ × A + ∇f × A

(9) ∇ · (A × B) = B · ∇ × A − A · ∇ × B

(10) ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

(11) A × (∇ × B) = (∇B) · A − (A · ∇)B

(12) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A

(13) ∇2f = ∇ · ∇f

(14) ∇2A = ∇(∇ · A) − ∇ × ∇ × A

(15) ∇ × ∇f = 0

(16) ∇ · ∇ × A = 0

If e1, e2, e3 are orthonormal unit vectors, a second-order tensor T can be
written in the dyadic form

(17) T =
∑

i,j
Tijeiej

In cartesian coordinates the divergence of a tensor is a vector with components

(18) (∇·T )i =
∑

j
(∂Tji/∂xj)

[This definition is required for consistency with Eq. (29)]. In general

(19) ∇ · (AB) = (∇ · A)B + (A · ∇)B

(20) ∇ · (fT ) = ∇f ·T+f∇·T
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Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to
the point x, y, z. Then

(21) ∇ · r = 3

(22) ∇ × r = 0

(23) ∇r = r/r

(24) ∇(1/r) = −r/r3

(25) ∇ · (r/r3) = 4πδ(r)

(26) ∇r = I

If V is a volume enclosed by a surface S and dS = ndS, where n is the unit
normal outward from V,

(27)

∫

V

dV∇f =

∫

S

dSf

(28)

∫

V

dV∇ · A =

∫

S

dS · A

(29)

∫

V

dV∇·T =

∫

S

dS ·T

(30)

∫

V

dV∇ × A =

∫

S

dS × A

(31)

∫

V

dV (f∇2g − g∇2f) =

∫

S

dS · (f∇g − g∇f)

(32)

∫

V

dV (A · ∇ × ∇ × B − B · ∇ × ∇ × A)

=

∫

S

dS · (B × ∇ × A − A × ∇ × B)

If S is an open surface bounded by the contour C, of which the line element is
dl,

(33)

∫

S

dS × ∇f =

∮

C

dlf
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(34)

∫

S

dS · ∇ × A =

∮

C

dl · A

(35)

∫

S

(dS × ∇) × A =

∮

C

dl × A

(36)

∫

S

dS · (∇f × ∇g) =

∮

C

fdg = −
∮

C

gdf

DIFFERENTIAL OPERATORS IN
CURVILINEAR COORDINATES5

Cylindrical Coordinates

Divergence

∇ · A =
1

r

∂

∂r
(rAr) +

1

r

∂Aφ

∂φ
+
∂Az

∂z

Gradient

(∇f)r =
∂f

∂r
; (∇f)φ =

1

r

∂f

∂φ
; (∇f)z =

∂f

∂z

Curl

(∇ × A)r =
1

r

∂Az

∂φ
− ∂Aφ

∂z

(∇ × A)φ =
∂Ar

∂z
− ∂Az

∂r

(∇ × A)z =
1

r

∂

∂r
(rAφ) − 1

r

∂Ar

∂φ

Laplacian

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂φ2
+
∂2f

∂z2
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Laplacian of a vector

(∇2
A)r = ∇2

Ar − 2

r2
∂Aφ

∂φ
− Ar

r2

(∇2A)φ = ∇2Aφ +
2

r2
∂Ar

∂φ
− Aφ

r2

(∇2
A)z = ∇2

Az

Components of (A · ∇)B

(A · ∇B)r = Ar
∂Br

∂r
+
Aφ

r

∂Br

∂φ
+ Az

∂Br

∂z
− AφBφ

r

(A · ∇B)φ = Ar
∂Bφ

∂r
+
Aφ

r

∂Bφ

∂φ
+ Az

∂Bφ

∂z
+
AφBr

r

(A · ∇B)z = Ar
∂Bz

∂r
+
Aφ

r

∂Bz

∂φ
+ Az

∂Bz

∂z

Divergence of a tensor

(∇ · T )r =
1

r

∂

∂r
(rTrr) +

1

r

∂Tφr

∂φ
+
∂Tzr

∂z
− Tφφ

r

(∇ · T )φ =
1

r

∂

∂r
(rTrφ) +

1

r

∂Tφφ

∂φ
+
∂Tzφ

∂z
+
Tφr

r

(∇ · T )z =
1

r

∂

∂r
(rTrz) +

1

r

∂Tφz

∂φ
+
∂Tzz

∂z
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Spherical Coordinates

Divergence

∇ · A =
1

r2
∂

∂r
(r

2
Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ

Gradient

(∇f)r =
∂f

∂r
; (∇f)θ =

1

r

∂f

∂θ
; (∇f)φ =

1

r sin θ

∂f

∂φ

Curl

(∇ × A)r =
1

r sin θ

∂

∂θ
(sin θAφ) − 1

r sin θ

∂Aθ

∂φ

(∇ × A)θ =
1

r sin θ

∂Ar

∂φ
− 1

r

∂

∂r
(rAφ)

(∇ × A)φ =
1

r

∂

∂r
(rAθ) − 1

r

∂Ar

∂θ

Laplacian

∇2
f =

1

r2
∂

∂r

(
r
2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

Laplacian of a vector

(∇2A)r = ∇2Ar − 2Ar

r2
− 2

r2
∂Aθ

∂θ
− 2 cot θAθ

r2
− 2

r2 sin θ

∂Aφ

∂φ

(∇2
A)θ = ∇2

Aθ +
2

r2
∂Ar

∂θ
− Aθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂Aφ

∂φ

(∇2A)φ = ∇2Aφ − Aφ

r2 sin2 θ
+

2

r2 sin θ

∂Ar

∂φ
+

2 cos θ

r2 sin2 θ

∂Aθ

∂φ
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Components of (A · ∇)B

(A · ∇B)r = Ar
∂Br

∂r
+
Aθ

r

∂Br

∂θ
+

Aφ

r sin θ

∂Br

∂φ
− AθBθ + AφBφ

r

(A · ∇B)θ = Ar
∂Bθ

∂r
+
Aθ

r

∂Bθ

∂θ
+

Aφ

r sin θ

∂Bθ

∂φ
+
AθBr

r
− cot θAφBφ

r

(A · ∇B)φ = Ar
∂Bφ

∂r
+
Aθ

r

∂Bφ

∂θ
+

Aφ

r sin θ

∂Bφ

∂φ
+
AφBr

r
+

cot θAφBθ

r

Divergence of a tensor

(∇ · T )r =
1

r2
∂

∂r
(r2Trr) +

1

r sin θ

∂

∂θ
(sin θTθr)

+
1

r sin θ

∂Tφr

∂φ
− Tθθ + Tφφ

r

(∇ · T )θ =
1

r2
∂

∂r
(r2Trθ) +

1

r sin θ

∂

∂θ
(sin θTθθ)

+
1

r sin θ

∂Tφθ

∂φ
+
Tθr

r
− cot θTφφ

r

(∇ · T )φ =
1

r2
∂

∂r
(r2Trφ) +

1

r sin θ

∂

∂θ
(sin θTθφ)

+
1

r sin θ

∂Tφφ

∂φ
+
Tφr

r
+

cot θTφθ

r
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DIMENSIONS AND UNITS

To get the value of a quantity in Gaussian units, multiply the value ex-
pressed in SI units by the conversion factor. Multiples of 3 in the conversion
factors result from approximating the speed of light c = 2.9979 × 1010 cm/sec

≈ 3 × 1010 cm/sec.

Dimensions

Physical Sym- SI Conversion Gaussian
Quantity bol SI Gaussian Units Factor Units

Capacitance C
t2q2

ml2
l farad 9 × 1011 cm

Charge q q
m1/2l3/2

t
coulomb 3 × 109 statcoulomb

Charge ρ
q

l3
m1/2

l3/2t
coulomb 3 × 103 statcoulomb

density /m3 /cm3

Conductance
tq2

ml2
l

t
siemens 9 × 1011 cm/sec

Conductivity σ
tq2

ml3
1

t
siemens 9 × 109 sec−1

/m

Current I, i
q

t

m1/2l3/2

t2
ampere 3 × 109 statampere

Current J, j
q

l2t

m1/2

l1/2t2
ampere 3 × 105 statampere

density /m2 /cm2

Density ρ
m

l3
m

l3
kg/m3 10−3 g/cm3

Displacement D
q

l2
m1/2

l1/2t
coulomb 12π × 105 statcoulomb

/m2 /cm2

Electric field E
ml

t2q

m1/2

l1/2t
volt/m

1

3
× 10

−4
statvolt/cm

Electro- E,
ml2

t2q

m1/2l1/2

t
volt

1

3
× 10

−2
statvolt

motance Emf

Energy U,W
ml2

t2
ml2

t2
joule 107 erg

Energy w, ǫ
m

lt2
m

lt2
joule/m3 10 erg/cm3

density
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Dimensions

Physical Sym- SI Conversion Gaussian
Quantity bol SI Gaussian Units Factor Units

Force F
ml

t2
ml

t2
newton 105 dyne

Frequency f, ν
1

t

1

t
hertz 1 hertz

Impedance Z
ml2

tq2
t

l
ohm

1

9
× 10−11 sec/cm

Inductance L
ml2

q2
t2

l
henry

1

9
× 10−11 sec2/cm

Length l l l meter (m) 102 centimeter
(cm)

Magnetic H
q

lt

m1/2

l1/2t
ampere– 4π × 10−3 oersted

intensity turn/m

Magnetic flux Φ
ml2

tq

m1/2l3/2

t
weber 108 maxwell

Magnetic B
m

tq

m1/2

l1/2t
tesla 104 gauss

induction

Magnetic m,µ
l2q

t

m1/2l5/2

t
ampere–m2 103 oersted–

moment cm3

Magnetization M
q

lt

m1/2

l1/2t
ampere– 4π × 10−3 oersted

turn/m

Magneto- M,
q

t

m1/2l1/2

t2
ampere–

4π

10
gilbert

motance Mmf turn

Mass m,M m m kilogram 103 gram (g)

(kg)

Momentum p,P
ml

t

ml

t
kg–m/s 105 g–cm/sec

Momentum
m

l2t

m

l2t
kg/m2–s 10−1 g/cm2–sec

density

Permeability µ
ml

q2
1 henry/m

1

4π
× 10

7
—
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Dimensions

Physical Sym- SI Conversion Gaussian
Quantity bol SI Gaussian Units Factor Units

Permittivity ǫ
t2q2

ml3
1 farad/m 36π × 109 —

Polarization P
q

l2
m1/2

l1/2t
coulomb/m2 3 × 105 statcoulomb

/cm2

Potential V, φ
ml2

t2q

m1/2l1/2

t
volt

1

3
× 10−2 statvolt

Power P
ml2

t3
ml2

t3
watt 107 erg/sec

Power
m

lt3
m

lt3
watt/m3 10 erg/cm3–sec

density

Pressure p, P
m

lt2
m

lt2
pascal 10 dyne/cm2

Reluctance R q2

ml2
1

l
ampere–turn 4π × 10−9 cm−1

/weber

Resistance R
ml2

tq2
t

l
ohm

1

9
× 10

−11
sec/cm

Resistivity η, ρ
ml3

tq2
t ohm–m

1

9
× 10

−9
sec

Thermal con- κ, k
ml

t3
ml

t3
watt/m– 105 erg/cm–sec–

ductivity deg (K) deg (K)

Time t t t second (s) 1 second (sec)

Vector A
ml

tq

m1/2l1/2

t
weber/m 106 gauss–cm

potential

Velocity v
l

t

l

t
m/s 102 cm/sec

Viscosity η, µ
m

lt

m

lt
kg/m–s 10 poise

Vorticity ζ
1

t

1

t
s−1 1 sec−1

Work W
ml2

t2
ml2

t2
joule 107 erg
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INTERNATIONAL SYSTEM (SI) NOMENCLATURE6

Physical Name Symbol Physical Name Symbol
Quantity of Unit for Unit Quantity of Unit for Unit

*length meter m electric volt V
potential

*mass kilogram kg
electric ohm Ω

*time second s resistance

*current ampere A electric siemens S
conductance

*temperature kelvin K
electric farad F

*amount of mole mol capacitance
substance

magnetic flux weber Wb
*luminous candela cd
intensity magnetic henry H

inductance
†plane angle radian rad

magnetic tesla T
†solid angle steradian sr intensity

frequency hertz Hz luminous flux lumen lm

energy joule J illuminance lux lx

force newton N activity (of a becquerel Bq
radioactive

pressure pascal Pa source)

power watt W absorbed dose gray Gy
(of ionizing

electric charge coulomb C radiation)

*SI base unit †Supplementary unit

METRIC PREFIXES

Multiple Prefix Symbol Multiple Prefix Symbol

10−1 deci d 10 deca da

10−2 centi c 102 hecto h

10−3 milli m 103 kilo k

10−6 micro µ 106 mega M

10−9 nano n 109 giga G

10−12 pico p 1012 tera T

10−15 femto f 1015 peta P

10−18 atto a 1018 exa E

14



PHYSICAL CONSTANTS (SI)7

Physical Quantity Symbol Value Units

Boltzmann constant k 1.3807 × 10−23 J K−1

Elementary charge e 1.6022 × 10−19 C

Electron mass me 9.1094 × 10−31 kg

Proton mass mp 1.6726 × 10−27 kg

Gravitational constant G 6.6726 × 10−11 m3s−2kg−1

Planck constant h 6.6261 × 10−34 J s

h̄ = h/2π 1.0546 × 10−34 J s

Speed of light in vacuum c 2.9979 × 108 m s−1

Permittivity of ǫ0 8.8542 × 10−12 F m−1

free space

Permeability of µ0 4π × 10−7 H m−1

free space

Proton/electron mass mp/me 1.8362 × 103

ratio

Electron charge/mass e/me 1.7588 × 1011 C kg−1

ratio

Rydberg constant R∞ =
me4

8ǫ02ch3
1.0974 × 107 m−1

Bohr radius a0 = ǫ0h
2/πme2 5.2918 × 10−11 m

Atomic cross section πa0
2 8.7974 × 10−21 m2

Classical electron radius re = e2/4πǫ0mc
2 2.8179 × 10−15 m

Thomson cross section (8π/3)re
2 6.6525 × 10−29 m2

Compton wavelength of h/mec 2.4263 × 10−12 m

electron h̄/mec 3.8616 × 10−13 m

Fine-structure constant α = e2/2ǫ0hc 7.2974 × 10−3

α−1 137.04

First radiation constant c1 = 2πhc2 3.7418 × 10−16 W m2

Second radiation c2 = hc/k 1.4388 × 10−2 m K

constant

Stefan-Boltzmann σ 5.6705 × 10−8 W m−2K−4

constant
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Physical Quantity Symbol Value Units

Wavelength associated λ0 = hc/e 1.2398 × 10−6 m

with 1 eV

Frequency associated ν0 = e/h 2.4180 × 1014 Hz

with 1 eV

Wave number associated k0 = e/hc 8.0655 × 105 m−1

with 1 eV

Energy associated with hν0 1.6022 × 10−19 J

1 eV

Energy associated with hc 1.9864 × 10−25 J

1 m−1

Energy associated with me3/8ǫ0
2h2 13.606 eV

1 Rydberg

Energy associated with k/e 8.6174 × 10−5 eV

1 Kelvin

Temperature associated e/k 1.1604 × 104 K

with 1 eV

Avogadro number NA 6.0221 × 1023 mol−1

Faraday constant F = NAe 9.6485 × 104 Cmol−1

Gas constant R = NAk 8.3145 J K−1mol−1

Loschmidt’s number n0 2.6868 × 1025 m−3

(no. density at STP)

Atomic mass unit mu 1.6605 × 10−27 kg

Standard temperature T0 273.15 K

Atmospheric pressure p0 = n0kT0 1.0133 × 105 Pa

Pressure of 1 mm Hg 1.3332 × 102 Pa

(1 torr)

Molar volume at STP V0 = RT0/p0 2.2414 × 10−2 m3

Molar weight of air Mair 2.8971 × 10−2 kg

calorie (cal) 4.1868 J

Gravitational g 9.8067 m s−2

acceleration
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PHYSICAL CONSTANTS (cgs)7

Physical Quantity Symbol Value Units

Boltzmann constant k 1.3807 × 10−16 erg/deg (K)

Elementary charge e 4.8032 × 10−10 statcoulomb

(statcoul)

Electron mass me 9.1094 × 10−28 g

Proton mass mp 1.6726 × 10−24 g

Gravitational constant G 6.6726 × 10−8 dyne-cm2/g2

Planck constant h 6.6261 × 10−27 erg-sec

h̄ = h/2π 1.0546 × 10−27 erg-sec

Speed of light in vacuum c 2.9979 × 1010 cm/sec

Proton/electron mass mp/me 1.8362 × 103

ratio

Electron charge/mass e/me 5.2728 × 1017 statcoul/g

ratio

Rydberg constant R∞ =
2π2me4

ch3
1.0974 × 105 cm−1

Bohr radius a0 = h̄2/me2 5.2918 × 10−9 cm

Atomic cross section πa0
2 8.7974 × 10−17 cm2

Classical electron radius re = e2/mc2 2.8179 × 10−13 cm

Thomson cross section (8π/3)re
2 6.6525 × 10−25 cm2

Compton wavelength of h/mec 2.4263 × 10−10 cm

electron h̄/mec 3.8616 × 10−11 cm

Fine-structure constant α = e2/h̄c 7.2974 × 10−3

α−1 137.04

First radiation constant c1 = 2πhc2 3.7418 × 10−5 erg-cm2/sec

Second radiation c2 = hc/k 1.4388 cm-deg (K)

constant

Stefan-Boltzmann σ 5.6705 × 10−5 erg/cm2-

constant sec-deg4

Wavelength associated λ0 1.2398 × 10−4 cm

with 1 eV
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Physical Quantity Symbol Value Units

Frequency associated ν0 2.4180 × 1014 Hz

with 1 eV

Wave number associated k0 8.0655 × 103 cm−1

with 1 eV

Energy associated with 1.6022 × 10−12 erg

1 eV

Energy associated with 1.9864 × 10−16 erg

1 cm−1

Energy associated with 13.606 eV

1 Rydberg

Energy associated with 8.6174 × 10−5 eV

1 deg Kelvin

Temperature associated 1.1604 × 104 deg (K)

with 1 eV

Avogadro number NA 6.0221 × 1023 mol−1

Faraday constant F = NAe 2.8925 × 1014 statcoul/mol

Gas constant R = NAk 8.3145 × 107 erg/deg-mol

Loschmidt’s number n0 2.6868 × 1019 cm−3

(no. density at STP)

Atomic mass unit mu 1.6605 × 10−24 g

Standard temperature T0 273.15 deg (K)

Atmospheric pressure p0 = n0kT0 1.0133 × 106 dyne/cm2

Pressure of 1 mm Hg 1.3332 × 103 dyne/cm2

(1 torr)

Molar volume at STP V0 = RT0/p0 2.2414 × 104 cm3

Molar weight of air Mair 28.971 g

calorie (cal) 4.1868 × 107 erg

Gravitational g 980.67 cm/sec2

acceleration
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FORMULA CONVERSION8

Here α = 102 cm m−1, β = 107 erg J−1, ǫ0 = 8.8542 × 10−12 F m−1,

µ0 = 4π×10−7 H m−1, c = (ǫ0µ0)
−1/2 = 2.9979×108 m s−1, and h̄ = 1.0546×

10−34 J s. To derive a dimensionally correct SI formula from one expressed in
Gaussian units, substitute for each quantity according to Q̄ = k̄Q, where k̄ is
the coefficient in the second column of the table corresponding to Q (overbars

denote variables expressed in Gaussian units). Thus, the formula ā0 = ¯̄h2/m̄ē2

for the Bohr radius becomes αa0 = (h̄β)2/[(mβ/α2)(e2αβ/4πǫ0)], or a0 =

ǫ0h
2/πme2. To go from SI to natural units in which h̄ = c = 1 (distinguished

by a circumflex), use Q = k̂−1Q̂, where k̂ is the coefficient corresponding to

Q in the third column. Thus â0 = 4πǫ0h̄
2/[(m̂h̄/c)(ê2ǫ0h̄c)] = 4π/m̂ê2. (In

transforming from SI units, do not substitute for ǫ0, µ0, or c.)

Physical Quantity Gaussian Units to SI Natural Units to SI

Capacitance α/4πǫ0 ǫ0
−1

Charge (αβ/4πǫ0)
1/2 (ǫ0h̄c)

−1/2

Charge density (β/4πα5ǫ0)
1/2 (ǫ0h̄c)

−1/2

Current (αβ/4πǫ0)
1/2 (µ0/h̄c)

1/2

Current density (β/4πα3ǫ0)
1/2 (µ0/h̄c)

1/2

Electric field (4πβǫ0/α
3)1/2 (ǫ0/h̄c)

1/2

Electric potential (4πβǫ0/α)1/2 (ǫ0/h̄c)
1/2

Electric conductivity (4πǫ0)
−1 ǫ0

−1

Energy β (h̄c)−1

Energy density β/α3 (h̄c)−1

Force β/α (h̄c)−1

Frequency 1 c−1

Inductance 4πǫ0/α µ0
−1

Length α 1

Magnetic induction (4πβ/α3µ0)
1/2 (µ0h̄c)

−1/2

Magnetic intensity (4πµ0β/α
3)1/2 (µ0/h̄c)

1/2

Mass β/α2 c/h̄

Momentum β/α h̄−1

Power β (h̄c2)−1

Pressure β/α3 (h̄c)−1

Resistance 4πǫ0/α (ǫ0/µ0)
1/2

Time 1 c

Velocity α c−1
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MAXWELL’S EQUATIONS

Name or Description SI Gaussian

Faraday’s law ∇ × E = −∂B
∂t

∇ × E = − 1

c

∂B

∂t

Ampere’s law ∇ × H =
∂D

∂t
+ J ∇ × H =

1

c

∂D

∂t
+

4π

c
J

Poisson equation ∇ · D = ρ ∇ · D = 4πρ

[Absence of magnetic ∇ · B = 0 ∇ · B = 0
monopoles]

Lorentz force on q (E + v × B) q

(
E +

1

c
v × B

)

charge q

Constitutive D = ǫE D = ǫE
relations B = µH B = µH

In a plasma, µ ≈ µ0 = 4π × 10−7 H m−1 (Gaussian units: µ ≈ 1). The

permittivity satisfies ǫ ≈ ǫ0 = 8.8542 × 10−12 Fm−1 (Gaussian: ǫ ≈ 1)
provided that all charge is regarded as free. Using the drift approximation
v⊥ = E×B/B2 to calculate polarization charge density gives rise to a dielec-

tric constant K ≡ ǫ/ǫ0 = 1+36π×109ρ/B2 (SI) = 1+4πρc2/B2 (Gaussian),
where ρ is the mass density.

The electromagnetic energy in volume V is given by

W =
1

2

∫

V

dV (H · B + E · D) (SI)

=
1

8π

∫

V

dV (H · B + E · D) (Gaussian).

Poynting’s theorem is

∂W

∂t
+

∫

S

N · dS = −
∫

V

dV J · E,

where S is the closed surface bounding V and the Poynting vector (energy flux
across S) is given by N = E × H (SI) or N = cE × H/4π (Gaussian).

20



ELECTRICITY AND MAGNETISM

In the following, ǫ = dielectric permittivity, µ = permeability of conduc-
tor, µ′ = permeability of surrounding medium, σ = conductivity, f = ω/2π =
radiation frequency, κm = µ/µ0 and κe = ǫ/ǫ0. Where subscripts are used,
‘1’ denotes a conducting medium and ‘2’ a propagating (lossless dielectric)
medium. All units are SI unless otherwise specified.

Permittivity of free space ǫ0 = 8.8542 × 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

= 1.2566 × 10−6 H m−1

Resistance of free space R0 = (µ0/ǫ0)
1/2 = 376.73 Ω

Capacity of parallel plates of area C = ǫA/d
A, separated by distance d

Capacity of concentric cylinders C = 2πǫl/ ln(b/a)
of length l, radii a, b

Capacity of concentric spheres of C = 4πǫab/(b− a)
radii a, b

Self-inductance of wire of length L = µl
l, carrying uniform current

Mutual inductance of parallel wires L = (µ′l/4π) [1 + 4 ln(d/a)]
of length l, radius a, separated
by distance d

Inductance of circular loop of radius L = b
{
µ′ [ln(8b/a) − 2] + µ/4

}
b, made of wire of radius a,
carrying uniform current

Relaxation time in a lossy medium τ = ǫ/σ

Skin depth in a lossy medium δ = (2/ωµσ)1/2 = (πfµσ)−1/2

Wave impedance in a lossy medium Z = [µ/(ǫ+ iσ/ω)]1/2

Transmission coefficient at T = 4.22 × 10−4(fκm1κe2/σ)1/2

conducting surface9

(good only for T ≪ 1)

Field at distance r from straight wire Bθ = µI/2πr tesla
carrying current I (amperes) = 0.2I/r gauss (r in cm)

Field at distance z along axis from Bz = µa2I/[2(a2 + z2)3/2]
circular loop of radius a
carrying current I
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ELECTROMAGNETIC FREQUENCY/

WAVELENGTH BANDS10

Frequency Range Wavelength Range

Designation
Lower Upper Lower Upper

ULF* 30Hz 10 Mm

VF* 30Hz 300Hz 1 Mm 10Mm

ELF 300 Hz 3 kHz 100 km 1Mm

VLF 3kHz 30 kHz 10 km 100 km

LF 30 kHz 300 kHz 1 km 10 km

MF 300 kHz 3MHz 100 m 1km

HF 3MHz 30MHz 10 m 100m

VHF 30MHz 300MHz 1 m 10m

UHF 300 MHz 3GHz 10 cm 1m

SHF† 3GHz 30GHz 1 cm 10 cm

S 2.6 3.95 7.6 11.5

G 3.95 5.85 5.1 7.6

J 5.3 8.2 3.7 5.7

H 7.05 10.0 3.0 4.25

X 8.2 12.4 2.4 3.7

M 10.0 15.0 2.0 3.0

P 12.4 18.0 1.67 2.4

K 18.0 26.5 1.1 1.67

R 26.5 40.0 0.75 1.1

EHF 30GHz 300GHz 1 mm 1 cm

Submillimeter 300 GHz 3THz 100µm 1mm

Infrared 3THz 430THz 700 nm 100µm

Visible 430 THz 750THz 400 nm 700 nm

Ultraviolet 750 THz 30PHz 10 nm 400 nm

X Ray 30PHz 3EHz 100 pm 10nm

Gamma Ray 3EHz 100 pm

In spectroscopy the angstrom is sometimes used (1Å = 10−8 cm = 0.1 nm).

*The boundary between ULF and VF (voice frequencies) is variously defined.

†The SHF (microwave) band is further subdivided approximately as shown.11
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AC CIRCUITS

For a resistance R, inductance L, and capacitance C in series with
a voltage source V = V0 exp(iωt) (here i =

√
−1), the current is given

by I = dq/dt, where q satisfies

L
d2q

dt2
+R

dq

dt
+
q

C
= V.

Solutions are q(t) = qs + qt, I(t) = Is + It, where the steady state is
Is = iωqs = V/Z in terms of the impedance Z = R+ i(ωL− 1/ωC) and
It = dqt/dt. For initial conditions q(0) ≡ q0 = q̄0 + qs, I(0) ≡ I0, the

transients can be of three types, depending on ∆ = R2 − 4L/C:

(a) Overdamped, ∆ > 0

qt =
I0 + γ+q̄0

γ+ − γ−
exp(−γ−t) −

I0 + γ−q̄0
γ+ − γ−

exp(−γ+t),

It =
γ+(I0 + γ−q̄0)

γ+ − γ−
exp(−γ+t) −

γ−(I0 + γ+q̄0)

γ+ − γ−
exp(−γ−t),

where γ± = (R± ∆1/2)/2L;

(b) Critically damped, ∆ = 0

qt = [q̄0 + (I0 + γR q̄0)t] exp(−γRt),

It = [I0 − (I0 + γR q̄0)γRt] exp(−γRt),

where γR = R/2L;

(c) Underdamped, ∆ < 0

qt =

[
γR q̄0 + I0

ω1

sinω1t+ q̄0 cosω1t

]
exp(−γRt),

It =

[
I0 cosω1t−

(ω1
2 + γR

2)q̄0 + γRI0

ω1
sin(ω1t)

]
exp(−γRt),

Here ω1 = ω0(1 − R2C/4L)1/2, where ω0 = (LC)−1/2 is the resonant
frequency. At ω = ω0, Z = R. The quality of the circuit is Q = ω0L/R.
Instability results when L, R, C are not all of the same sign.
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DIMENSIONLESS NUMBERS OF FLUID MECHANICS12

Name(s) Symbol Definition Significance

Alfvén, Al, Ka VA/V *(Magnetic force/

Kármán inertial force)1/2

Bond Bd (ρ′ − ρ)L2g/Σ Gravitational force/
surface tension

Boussinesq B V/(2gR)1/2 (Inertial force/

gravitational force)1/2

Brinkman Br µV 2/k∆T Viscous heat/conducted heat

Capillary Cp µV/Σ Viscous force/surface tension

Carnot Ca (T2 − T1)/T2 Theoretical Carnot cycle
efficiency

Cauchy, Cy, Hk ρV 2/Γ = M2 Inertial force/
Hooke compressibility force

Chandra- Ch B2L2/ρνη Magnetic force/dissipative
sekhar forces

Clausius Cl LV 3ρ/k∆T Kinetic energy flow rate/heat
conduction rate

Cowling C (VA/V )2 = Al2 Magnetic force/inertial force

Crispation Cr µκ/ΣL Effect of diffusion/effect of
surface tension

Dean D D3/2V/ν(2r)1/2 Transverse flow due to
curvature/longitudinal flow

[Drag CD (ρ′ − ρ)Lg/ Drag force/inertial force
coefficient] ρ′V 2

Eckert E V 2/cp∆T Kinetic energy/change in
thermal energy

Ekman Ek (ν/2ΩL2)1/2 = (Viscous force/Coriolis force)1/2

(Ro/Re)1/2

Euler Eu ∆p/ρV 2 Pressure drop due to friction/
dynamic pressure

Froude Fr V/(gL)1/2 †(Inertial force/gravitational or

V/NL buoyancy force)1/2

Gay–Lussac Ga 1/β∆T Inverse of relative change in
volume during heating

Grashof Gr gL3β∆T/ν2 Buoyancy force/viscous force

[Hall CH λ/rL Gyrofrequency/
coefficient] collision frequency

*(†) Also defined as the inverse (square) of the quantity shown.
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Name(s) Symbol Definition Significance

Hartmann H BL/(µη)1/2 = (Magnetic force/

(Rm ReC)1/2 dissipative force)1/2

Knudsen Kn λ/L Hydrodynamic time/
collision time

Lewis Le κ/D *Thermal conduction/molecular
diffusion

Lorentz Lo V/c Magnitude of relativistic effects

Lundquist Lu µ0LVA/η = J × B force/resistive magnetic
Al Rm diffusion force

Mach M V/CS Magnitude of compressibility
effects

Magnetic Mm V/VA = Al−1 (Inertial force/magnetic force)1/2

Mach

Magnetic Rm µ0LV/η Flow velocity/magnetic diffusion
Reynolds velocity

Newton Nt F/ρL2V 2 Imposed force/inertial force

Nusselt N αL/k Total heat transfer/thermal
conduction

Péclet Pe LV/κ Heat convection/heat conduction

Poisseuille Po D2∆p/µLV Pressure force/viscous force

Prandtl Pr ν/κ Momentum diffusion/
heat diffusion

Rayleigh Ra gH3β∆T/νκ Buoyancy force/diffusion force

Reynolds Re LV/ν Inertial force/viscous force

Richardson Ri (NH/∆V )2 Buoyancy effects/
vertical shear effects

Rossby Ro V/2ΩL sin Λ Inertial force/Coriolis force

Schmidt Sc ν/D Momentum diffusion/
molecular diffusion

Stanton St α/ρcpV Thermal conduction loss/
heat capacity

Stefan Sf σLT 3/k Radiated heat/conducted heat

Stokes S ν/L2f Viscous damping rate/
vibration frequency

Strouhal Sr fL/V Vibration speed/flow velocity

Taylor Ta (2ΩL2/ν)2 Centrifugal force/viscous force

R1/2(∆R)3/2 (Centrifugal force/
·(Ω/ν) viscous force)1/2

Thring, Th, Bo ρcpV/ǫσT
3 Convective heat transport/

Boltzmann radiative heat transport

Weber W ρLV 2/Σ Inertial force/surface tension
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Nomenclature:

B Magnetic induction

Cs, c Speeds of sound, light

cp Specific heat at constant pressure (units m2 s−2 K−1)

D = 2R Pipe diameter

F Imposed force

f Vibration frequency

g Gravitational acceleration

H,L Vertical, horizontal length scales

k = ρcpκ Thermal conductivity (units kg m−1 s−2)

N = (g/H)1/2 Brunt–Väisälä frequency

R Radius of pipe or channel

r Radius of curvature of pipe or channel

rL Larmor radius
T Temperature

V Characteristic flow velocity

VA = B/(µ0ρ)
1/2 Alfvén speed

α Newton’s-law heat coefficient, k
∂T

∂x
= α∆T

β Volumetric expansion coefficient, dV/V = βdT

Γ Bulk modulus (units kg m−1 s−2)

∆R,∆V,∆p,∆T Imposed differences in two radii, velocities,
pressures, or temperatures

ǫ Surface emissivity

η Electrical resistivity

κ,D Thermal, molecular diffusivities (units m2 s−1)

Λ Latitude of point on earth’s surface

λ Collisional mean free path

µ = ρν Viscosity

µ0 Permeability of free space

ν Kinematic viscosity (units m2 s−1)

ρ Mass density of fluid medium

ρ′ Mass density of bubble, droplet, or moving object

Σ Surface tension (units kg s−2)

σ Stefan–Boltzmann constant
Ω Solid-body rotational angular velocity
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SHOCKS

At a shock front propagating in a magnetized fluid at an angle θ with
respect to the magnetic induction B, the jump conditions are 13,14

(1) ρU = ρ̄Ū ≡ q;

(2) ρU2 + p+B 2
⊥ /2µ = ρ̄Ū2 + p̄ + B̄ 2

⊥ /2µ;

(3) ρUV − B‖B⊥/µ = ρ̄ŪV̄ − B̄‖B̄⊥/µ;

(4) B‖ = B̄‖;

(5) UB⊥ − V B‖ = ŪB̄⊥ − V̄ B̄‖;

(6) 1
2 (U2 + V 2) + w + (UB 2

⊥ − V B‖B⊥)/µρU

= 1
2 (Ū2 + V̄ 2) + w̄ + (ŪB̄ 2

⊥ − V̄ B̄‖B̄⊥)/µρ̄Ū .

Here U and V are components of the fluid velocity normal and tangential to
the front in the shock frame; ρ = 1/υ is the mass density; p is the pressure;
B⊥ = B sin θ, B‖ = B cos θ; µ is the magnetic permeability (µ = 4π in cgs

units); and the specific enthalpy is w = e + pυ, where the specific internal
energy e satisfies de = Tds − pdυ in terms of the temperature T and the
specific entropy s. Quantities in the region behind (downstream from) the

front are distinguished by a bar. If B = 0, then15

(7) U − Ū = [(p̄− p)(υ − ῡ)]1/2;

(8) (p̄− p)(υ − ῡ)−1 = q2;

(9) w̄ − w = 1
2 (p̄− p)(υ + ῡ);

(10) ē− e = 1
2 (p̄ + p)(υ − ῡ).

In what follows we assume that the fluid is a perfect gas with adiabatic index
γ = 1 + 2/n, where n is the number of degrees of freedom. Then p = ρRT/m,
where R is the universal gas constant and m is the molar weight; the sound
speed is given by Cs

2 = (∂p/∂ρ)s = γpυ; and w = γe = γpυ/(γ − 1). For a

general oblique shock in a perfect gas the quantity X = r−1(U/VA)2 satisfies14

(11) (X−β/α)(X−cos2 θ)2 = X sin2 θ
{

[1 + (r − 1)/2α]X − cos2 θ
}

, where

r = ρ̄/ρ, α = 1
2 [γ + 1 − (γ − 1)r], and β = Cs

2/VA
2 = 4πγp/B2.

The density ratio is bounded by

(12) 1 < r < (γ + 1)/(γ − 1).

If the shock is normal to B (i.e., if θ = π/2), then

(13) U2 = (r/α)
{
Cs

2 + VA
2 [1 + (1 − γ/2)(r − 1)]

}
;

(14) U/Ū = B̄/B = r;

27



(15) V̄ = V ;

(16) p̄ = p+ (1 − r−1)ρU2 + (1 − r2)B2/2µ.

If θ = 0, there are two possibilities: switch-on shocks, which require β < 1 and
for which

(17) U2 = rVA
2;

(18) Ū = VA
2/U ;

(19) B̄ 2
⊥ = 2B 2

‖ (r − 1)(α− β);

(20) V̄ = ŪB̄⊥/B‖;

(21) p̄ = p+ ρU2(1 − α+ β)(1 − r−1),

and acoustic (hydrodynamic) shocks, for which

(22) U2 = (r/α)Cs
2;

(23) Ū = U/r;

(24) V̄ = B̄⊥ = 0;

(25) p̄ = p+ ρU2(1 − r−1).

For acoustic shocks the specific volume and pressure are related by

(26) ῡ/υ = [(γ + 1)p+ (γ − 1)p̄] / [(γ − 1)p+ (γ + 1)p̄].

In terms of the upstream Mach number M = U/Cs,

(27) ρ̄/ρ = υ/ῡ = U/Ū = (γ + 1)M2/[(γ − 1)M2 + 2];

(28) p̄/p = (2γM2 − γ + 1)/(γ + 1);

(29) T̄ /T = [(γ − 1)M2 + 2](2γM2 − γ + 1)/(γ + 1)2M2;

(30) M̄2 = [(γ − 1)M2 + 2]/[2γM2 − γ + 1].

The entropy change across the shock is

(31) ∆s ≡ s̄− s = cυ ln[(p̄/p)(ρ/ρ̄)γ ],

where cυ = R/(γ − 1)m is the specific heat at constant volume; here R is the
gas constant. In the weak-shock limit (M → 1),

(32) ∆s → cυ
2γ(γ − 1)

3(γ + 1)
(M2 − 1)3 ≈ 16γR

3(γ + 1)m
(M − 1)3.

The radius at time t of a strong spherical blast wave resulting from the explo-
sive release of energy E in a medium with uniform density ρ is

(33) RS = C0(Et
2/ρ)1/5,

where C0 is a constant depending on γ. For γ = 7/5, C0 = 1.033.
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FUNDAMENTAL PLASMA PARAMETERS

All quantities are in Gaussian cgs units except temperature (T , Te, Ti)
expressed in eV and ion mass (mi) expressed in units of the proton mass,
µ = mi/mp; Z is charge state; k is Boltzmann’s constant; K is wavenumber;
γ is the adiabatic index; ln Λ is the Coulomb logarithm.

Frequencies

electron gyrofrequency fce = ωce/2π = 2.80 × 106BHz

ωce = eB/mec = 1.76 × 107B rad/sec

ion gyrofrequency fci = ωci/2π = 1.52 × 103Zµ−1BHz

ωci = ZeB/mic = 9.58 × 103Zµ−1B rad/sec

electron plasma frequency fpe = ωpe/2π = 8.98 × 103ne
1/2 Hz

ωpe = (4πnee
2/me)1/2

= 5.64 × 104ne
1/2 rad/sec

ion plasma frequency fpi = ωpi/2π

= 2.10 × 102Zµ−1/2ni
1/2 Hz

ωpi = (4πniZ
2e2/mi)

1/2

= 1.32 × 103Zµ−1/2ni
1/2rad/sec

electron trapping rate νTe = (eKE/me)1/2

= 7.26 × 108K1/2E1/2 sec−1

ion trapping rate νTi = (ZeKE/mi)
1/2

= 1.69 × 107Z1/2K1/2E1/2µ−1/2 sec−1

electron collision rate νe = 2.91 × 10−6ne ln ΛTe
−3/2 sec−1

ion collision rate νi = 4.80 × 10−8Z4µ−1/2ni ln ΛTi
−3/2 sec−1

Lengths

electron deBroglie length λ̄ = h̄/(mekTe)1/2 = 2.76 × 10−8Te
−1/2 cm

classical distance of e2/kT = 1.44 × 10−7T−1 cm
minimum approach

electron gyroradius re = vT e/ωce = 2.38Te
1/2B−1 cm

ion gyroradius ri = vT i/ωci

= 1.02 × 102µ1/2Z−1Ti
1/2B−1 cm

electron inertial length c/ωpe = 5.31 × 105ne
−1/2 cm

ion inertial length c/ωpi = 2.28 × 107(µ/ni)
1/2 cm

Debye length λD = (kT/4πne2)1/2 = 7.43 × 102T 1/2n−1/2 cm
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Velocities

electron thermal velocity vT e = (kTe/me)1/2

= 4.19 × 107Te
1/2 cm/sec

ion thermal velocity vT i = (kTi/mi)
1/2

= 9.79 × 105µ−1/2Ti
1/2 cm/sec

ion sound velocity Cs = (γZkTe/mi)
1/2

= 9.79 × 105(γZTe/µ)1/2 cm/sec

Alfvén velocity vA = B/(4πnimi)
1/2

= 2.18 × 1011µ−1/2ni
−1/2B cm/sec

Dimensionless

(electron/proton mass ratio)1/2 (me/mp)1/2 = 2.33 × 10−2 = 1/42.9

number of particles in (4π/3)nλD
3 = 1.72 × 109T 3/2n−1/2

Debye sphere

Alfvén velocity/speed of light vA/c = 7.28µ−1/2ni
−1/2B

electron plasma/gyrofrequency ωpe/ωce = 3.21 × 10−3ne
1/2B−1

ratio

ion plasma/gyrofrequency ratio ωpi/ωci = 0.137µ1/2ni
1/2B−1

thermal/magnetic energy ratio β = 8πnkT/B2 = 4.03 × 10−11nTB−2

magnetic/ion rest energy ratio B2/8πnimic
2 = 26.5µ−1ni

−1B2

Miscellaneous
Bohm diffusion coefficient DB = (ckT/16eB)

= 6.25 × 106TB−1 cm2/sec

transverse Spitzer resistivity η⊥ = 1.15 × 10−14Z ln ΛT−3/2 sec

= 1.03 × 10−2Z ln ΛT−3/2 Ω cm

The anomalous collision rate due to low-frequency ion-sound turbulence is

ν* ≈ ωpeW̃/kT = 5.64 × 10
4
ne

1/2
W̃/kT sec

−1
,

where W̃ is the total energy of waves with ω/K < vT i.

Magnetic pressure is given by

Pmag = B2/8π = 3.98 × 106(B/B0)
2 dynes/cm2 = 3.93(B/B0)

2 atm,

where B0 = 10 kG = 1 T.
Detonation energy of 1 kiloton of high explosive is

WkT = 10
12

cal = 4.2 × 10
19

erg.
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PLASMA DISPERSION FUNCTION

Definition16 (first form valid only for Im ζ > 0):

Z(ζ) = π
−1/2

∫
+∞

−∞

dt exp
(
−t2

)

t− ζ
= 2i exp

(
−ζ2

)∫
iζ

−∞

dt exp
(
−t2

)
.

Physically, ζ = x+ iy is the ratio of wave phase velocity to thermal velocity.

Differential equation:

dZ

dζ
= −2 (1 + ζZ) , Z(0) = iπ1/2;

d2Z

dζ2
+ 2ζ

dZ

dζ
+ 2Z = 0.

Real argument (y = 0):

Z(x) = exp
(
−x2

)(
iπ1/2 − 2

∫ x

0

dt exp
(
t2

))
.

Imaginary argument (x = 0):

Z(iy) = iπ1/2 exp
(
y2

)
[1 − erf(y)] .

Power series (small argument):

Z(ζ) = iπ1/2 exp
(
−ζ2

)
− 2ζ

(
1 − 2ζ2/3 + 4ζ4/15 − 8ζ6/105 + · · ·

)
.

Asymptotic series, |ζ| ≫ 1 (Ref. 17):

Z(ζ) = iπ1/2σ exp
(
−ζ2

)
− ζ−1

(
1 + 1/2ζ2 + 3/4ζ4 + 15/8ζ6 + · · ·

)
,

where

σ =

{
0 y > |x|−1

1 |y| < |x|−1

2 y < −|x|−1

Symmetry properties (the asterisk denotes complex conjugation):

Z(ζ*) = − [Z(−ζ)]*;

Z(ζ*) = [Z(ζ)] * + 2iπ1/2 exp[−(ζ*)2] (y > 0).

Two-pole approximations18 (good for ζ in upper half plane except when y <

π1/2x2 exp(−x2), x ≫ 1):

Z(ζ) ≈ 0.50 + 0.81i

a− ζ
− 0.50 − 0.81i

a* + ζ
, a = 0.51 − 0.81i;

Z
′
(ζ) ≈ 0.50 + 0.96i

(b− ζ)2
+

0.50 − 0.96i

(b* + ζ)2
, b = 0.48 − 0.91i.
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COLLISIONS AND TRANSPORT

Temperatures are in eV; the corresponding value of Boltzmann’s constant
is k = 1.60 × 10−12 erg/eV; masses µ, µ′ are in units of the proton mass;
eα = Zαe is the charge of species α. All other units are cgs except where
noted.

Relaxation Rates

Rates are associated with four relaxation processes arising from the in-
teraction of test particles (labeled α) streaming with velocity vα through a
background of field particles (labeled β):

slowing down
dvα

dt
= −να\β

s vα

transverse diffusion
d

dt
(vα − v̄α)

2
⊥ = ν

α\β

⊥ vα
2

parallel diffusion
d

dt
(vα − v̄α)

2
‖ = ν

α\β

‖ vα
2

energy loss
d

dt
vα

2
= −να\β

ǫ vα
2
,

where vα = |vα| and the averages are performed over an ensemble of test
particles and a Maxwellian field particle distribution. The exact formulas may
be written19

να\β
s = (1 +mα/mβ)ψ(xα\β)ν

α\β
0 ;

ν
α\β

⊥ = 2
[
(1 − 1/2x

α\β
)ψ(x

α\β
) + ψ

′
(x

α\β
)
]
ν

α\β
0 ;

ν
α\β

‖ =
[
ψ(xα\β)/xα\β

]
ν

α\β
0 ;

ν
α\β
ǫ = 2

[
(mα/mβ)ψ(x

α\β
) − ψ

′
(x

α\β
)
]
ν

α\β
0 ,

where

ν
α\β
0 = 4πeα

2eβ
2λαβnβ/mα

2vα
3; xα\β = mβvα

2/2kTβ ;

ψ(x) =
2

√
π

∫ x

0

dt t1/2e−t; ψ′(x) =
dψ

dx
,

and λαβ = ln Λαβ is the Coulomb logarithm (see below). Limiting forms of
νs, ν⊥ and ν‖ are given in the following table. All the expressions shown
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have units cm3 sec−1. Test particle energy ǫ and field particle temperature T
are both in eV; µ = mi/mp where mp is the proton mass; Z is ion charge
state; in electron–electron and ion–ion encounters, field particle quantities are
distinguished by a prime. The two expressions given below for each rate hold

for very slow (xα\β ≪ 1) and very fast (xα\β ≫ 1) test particles, respectively.

Slow Fast
Electron–electron
νe|e

s /neλee ≈ 5.8 × 10−6T−3/2 −→ 7.7 × 10−6ǫ−3/2

ν
e|e
⊥ /neλee ≈ 5.8 × 10−6T−1/2ǫ−1 −→ 7.7 × 10−6ǫ−3/2

ν
e|e
‖ /neλee ≈ 2.9 × 10−6T−1/2ǫ−1 −→ 3.9 × 10−6Tǫ−5/2

Electron–ion

νe|i
s /niZ

2λei ≈ 0.23µ3/2T−3/2 −→ 3.9 × 10−6ǫ−3/2

ν
e|i
⊥ /niZ

2λei ≈ 2.5 × 10−4µ1/2T−1/2ǫ−1−→ 7.7 × 10−6ǫ−3/2

ν
e|i
‖ /niZ

2λei ≈ 1.2 × 10−4µ1/2T−1/2ǫ−1−→ 2.1 × 10−9µ−1Tǫ−5/2

Ion–electron

νi|e
s /neZ

2λie ≈ 1.6 × 10−9µ−1T−3/2 −→ 1.7 × 10−4µ1/2ǫ−3/2

ν
i|e
⊥ /neZ

2
λie ≈ 3.2 × 10

−9
µ
−1
T

−1/2
ǫ
−1 −→ 1.8 × 10

−7
µ
−1/2

ǫ
−3/2

ν
i|e
‖ /neZ

2λie ≈ 1.6 × 10−9µ−1T−1/2ǫ−1 −→ 1.7 × 10−4µ1/2Tǫ−5/2

Ion–ion

νi|i′
s

ni′Z2Z′2λii′
≈ 6.8 × 10

−8 µ
′1/2

µ

(
1 +

µ′

µ

)−1/2

T
−3/2

−→ 9.0 × 10−8

(
1

µ
+

1

µ′

)
µ1/2

ǫ3/2

ν
i|i′
⊥

ni′Z2Z′2λii′
≈ 1.4 × 10−7µ′1/2µ−1T−1/2ǫ−1

−→ 1.8 × 10−7µ−1/2ǫ−3/2

ν
i|i′
‖

ni′Z
2Z′2λii′

≈ 6.8 × 10
−8
µ
′1/2

µ
−1
T

−1/2
ǫ
−1

−→ 9.0 × 10
−8
µ

1/2
µ
′−1

Tǫ
−5/2

In the same limits, the energy transfer rate follows from the identity

νǫ = 2νs − ν⊥ − ν‖,

except for the case of fast electrons or fast ions scattered by ions, where the
leading terms cancel. Then the appropriate forms are

νe|i
ǫ −→ 4.2 × 10−9niZ

2λei[
ǫ−3/2µ−1 − 8.9 × 104(µ/T )1/2ǫ−1 exp(−1836µǫ/T )

]
sec−1
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and

νi|i′
ǫ −→ 1.8 × 10−7ni′Z

2Z′2λii′

[
ǫ
−3/2

µ
1/2

/µ
′
− 1.1[(µ+ µ

′
)/µµ

′
](µ

′
/T

′
)
1/2

ǫ
−1

exp(−µ′
ǫ/µT

′
)
]

sec
−1
.

In general, the energy transfer rate να\β
ǫ is positive for ǫ > ǫα* and nega-

tive for ǫ < ǫα*, where x* = (mβ/mα)ǫα*/Tβ is the solution of ψ′(x*) =
(mα|mβ)ψ(x*). The ratio ǫα*/Tβ is given for a number of specific α, β in the
following table:

α\β i|e e|e, i|i e|p e|D e|T, e|He3 e|He4

ǫα*

Tβ

1.5 0.98 4.8 × 10−3 2.6 × 10−3 1.8 × 10−3 1.4 × 10−3

When both species are near Maxwellian, with Ti
<∼ Te, there are just

two characteristic collision rates. For Z = 1,

νe = 2.9 × 10−6nλTe
−3/2 sec−1;

νi = 4.8 × 10
−8
nλTi

−3/2
µ
−1/2

sec
−1
.

Temperature Isotropization

Isotropization is described by

dT⊥
dt

= −1

2

dT‖

dt
= −να

T (T⊥ − T‖),

where, if A ≡ T⊥/T‖ − 1 > 0,

να
T =

2
√
πeα

2eβ
2nαλαβ

mα
1/2(kT‖)3/2

A−2

[
−3 + (A+ 3)

tan−1(A1/2)

A1/2

]
.

If A < 0, tan−1(A1/2)/A1/2 is replaced by tanh−1(−A)1/2/(−A)1/2. For
T⊥ ≈ T‖ ≡ T ,

νe
T = 8.2 × 10−7nλT−3/2 sec−1;

ν
i
T = 1.9 × 10

−8
nλZ

2
µ
−1/2

T
−3/2

sec
−1
.
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Thermal Equilibration

If the components of a plasma have different temperatures, but no rela-
tive drift, equilibration is described by

dTα

dt
=

∑

β

ν̄α\β
ǫ (Tβ − Tα),

where

ν̄α\β
ǫ = 1.8 × 10−19 (mαmβ)1/2Zα

2Zβ
2nβλαβ

(mαTβ +mβTα)3/2
sec−1.

For electrons and ions with Te ≈ Ti ≡ T , this implies

ν̄
e|i
ǫ /ni = ν̄

i|e
ǫ /ne = 3.2 × 10

−9
Z

2
λ/µT

3/2
cm

3
sec

−1
.

Coulomb Logarithm

For test particles of mass mα and charge eα = Zαe scattering off field
particles of mass mβ and charge eβ = Zβe, the Coulomb logarithm is defined

as λ = ln Λ ≡ ln(rmax/rmin). Here rmin is the larger of eαeβ/mαβ ū
2 and

h̄/2mαβū, averaged over both particle velocity distributions, where mαβ =

mαmβ/(mα +mβ) and u = vα −vβ ; rmax = (4π
∑

nγeγ
2/kTγ)−1/2, where

the summation extends over all species γ for which ū2 < vT γ
2 = kTγ/mγ . If

this inequality cannot be satisfied, or if either ūωcα
−1 < rmax or ūωcβ

−1 <
rmax, the theory breaks down. Typically λ ≈ 10–20. Corrections to the trans-
port coefficients are O(λ−1); hence the theory is good only to ∼ 10% and fails
when λ ∼ 1.

The following cases are of particular interest:

(a) Thermal electron–electron collisions

λee = 23.5 − ln(ne
1/2Te

−5/4) − [10−5 + (lnTe − 2)2/16]1/2

(b) Electron–ion collisions

λei = λie = 23 − ln
(
ne

1/2
ZT

−3/2
e

)
, Time/mi < Te < 10Z

2
eV;

= 24 − ln
(
ne

1/2T−1
e

)
, Time/mi < 10Z2 eV < Te

= 30 − ln
(
ni

1/2
Ti

−3/2
Z

2
µ
−1

)
, Te < TiZme/mi.

(c) Mixed ion–ion collisions

λii′ = λi′i = 23 − ln

[
ZZ′(µ+ µ′)

µTi′ + µ′Ti

(
niZ

2

Ti

+
ni′Z

′2

Ti′

)1/2
]
.

35



(d) Counterstreaming ions (relative velocity vD = βDc) in the presence of

warm electrons, kTi/mi, kTi′/mi′ < vD
2 < kTe/me

λii′ = λi′i = 35 − ln

[
ZZ′(µ+ µ′)

µµ′βD
2

(
ne

Te

)1/2
]
.

Fokker-Planck Equation

Dfα

Dt
≡ ∂fα

∂t
+ v · ∇fα + F · ∇vf

α =

(
∂fα

∂t

)

coll

,

where F is an external force field. The general form of the collision integral is

(∂fα/∂t)coll = −
∑

β
∇v · Jα\β , with

J
α\β

= 2πλαβ

eα
2eβ

2

mα

∫
d
3
v
′
(u

2
I − uu)u

−3

·
{

1

mβ

fα(v)∇
v
′f

β(v′) − 1

mα

fβ(v′)∇vf
α(v)

}

(Landau form) where u = v′ − v and I is the unit dyad, or alternatively,

J
α\β

= 4πλαβ

eα
2eβ

2

mα
2

{
f

α
(v)∇vH(v) − 1

2
∇v ·

[
f

α
(v)∇v∇vG(v)

]}
,

where the Rosenbluth potentials are

G(v) =

∫
fβ(v′)ud3v′

H(v) =

(
1 +

mα

mβ

)∫
f

β
(v

′
)u

−1
d
3
v
′
.

If species α is a weak beam (number and energy density small compared with
background) streaming through a Maxwellian plasma, then

Jα\β = − mα

mα +mβ

να\β
s vfα − 1

2
ν

α\β

‖ vv · ∇vf
α

− 1

4
ν

α\β

⊥

(
v
2
I − vv

)
· ∇vf

α
.
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B-G-K Collision Operator

For distribution functions with no large gradients in velocity space, the
Fokker-Planck collision terms can be approximated according to

Dfe

Dt
= νee(Fe − fe) + νei(F̄e − fe);

Dfi

Dt
= νie(F̄i − fi) + νii(Fi − fi).

The respective slowing-down rates να\β
s given in the Relaxation Rate section

above can be used for ναβ, assuming slow ions and fast electrons, with ǫ re-
placed by Tα. (For νee and νii, one can equally well use ν⊥, and the result
is insensitive to whether the slow- or fast-test-particle limit is employed.) The
Maxwellians Fα and F̄α are given by

Fα = nα

(
mα

2πkTα

)3/2

exp

{
−

[
mα(v − vα)2

2kTα

]}
;

F̄α = nα

(
mα

2πkT̄α

)3/2

exp

{
−

[
mα(v − v̄α)2

2kT̄α

]}
,

where nα, vα and Tα are the number density, mean drift velocity, and effective
temperature obtained by taking moments of fα. Some latitude in the definition
of T̄α and v̄α is possible;20 one choice is T̄e = Ti, T̄i = Te, v̄e = vi, v̄i = ve.

Transport Coefficients

Transport equations for a multispecies plasma:

dαnα

dt
+ nα∇ · vα = 0;

mαnα
dαvα

dt
= −∇pα − ∇ · Pα + Zαenα

[
E +

1

c
vα × B

]
+ Rα;

3

2
nα

dαkTα

dt
+ pα∇ · vα = −∇ · qα − Pα : ∇vα +Qα.

Here dα/dt ≡ ∂/∂t + vα · ∇; pα = nαkTα, where k is Boltzmann’s constant;

Rα =
∑

β
Rαβ and Qα =

∑
β
Qαβ , where Rαβ and Qαβ are respectively

the momentum and energy gained by the αth species through collisions with
the βth;Pα is the stress tensor; and qα is the heat flow.
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The transport coefficients in a simple two-component plasma (electrons
and singly charged ions) are tabulated below. Here ‖ and ⊥ refer to the di-
rection of the magnetic field B = bB; u = ve − vi is the relative streaming
velocity; ne = ni ≡ n; j = −neu is the current; ωce = 1.76 × 107B sec−1 and
ωci = (me/mi)ωce are the electron and ion gyrofrequencies, respectively; and
the basic collisional times are taken to be

τe =
3
√
me(kTe)3/2

4
√

2π nλe4
= 3.44 × 10

5 Te
3/2

nλ
sec,

where λ is the Coulomb logarithm, and

τi =
3
√
mi(kTi)

3/2

4
√
πnλe4

= 2.09 × 10
7 Ti

3/2

nλ
µ

1/2
sec.

In the limit of large fields (ωcατα ≫ 1, α = i, e) the transport processes may

be summarized as follows:21

momentum transfer Rei= −Rie ≡ R = Ru + RT ;

frictional force Ru = ne(j‖/σ‖ + j⊥/σ⊥);

electrical σ‖ = 1.96σ⊥; σ⊥ = ne2τe/me;
conductivities

thermal force RT = −0.71n∇‖(kTe) − 3n

2ωceτe

b × ∇⊥(kTe);

ion heating Qi =
3me

mi

nk

τe

(Te − Ti);

electron heating Qe = −Qi − R · u;

ion heat flux qi = −κi
‖∇‖(kTi) − κ

i
⊥∇⊥(kTi) + κ

i
∧b × ∇⊥(kTi);

ion thermal κi
‖ = 3.9

nkTiτi

mi

; κi
⊥ =

2nkTi

miω 2
ci
τi

; κi
∧ =

5nkTi

2miωci

;
conductivities

electron heat flux qe = qe
u

+ qe
T ;

frictional heat flux qe
u

= 0.71nkTeu‖ +
3nkTe

2ωceτe

b × u⊥;

thermal gradient q
e
T = −κe

‖∇‖(kTe) − κ
e
⊥∇⊥(kTe) − κ

e
∧b × ∇⊥(kTe);

heat flux

electron thermal κ
e
‖ = 3.2

nkTeτe

me
; κ

e
⊥ = 4.7

nkTe

meω 2
ceτe

; κ
e
∧ =

5nkTe

2meωce
;

conductivities

stress tensor (either Pxx= −η0
2

(Wxx +Wyy) − η1

2
(Wxx −Wyy) − η3Wxy;

species)
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Pyy= −η0
2

(Wxx +Wyy) +
η1

2
(Wxx −Wyy) + η3Wxy;

Pxy= Pyx = −η1Wxy +
η3

2
(Wxx −Wyy);

Pxz= Pzx = −η2Wxz − η4Wyz;

Pyz = Pzy = −η2Wyz + η4Wxz;

Pzz = −η0Wzz

(here the z axis is defined parallel to B);

ion viscosity ηi
0 = 0.96nkTiτi; ηi

1 =
3nkTi

10ω 2
ci
τi

; ηi
2 =

6nkTi

5ω 2
ci
τi

;

η
i
3 =

nkTi

2ωci
; η

i
4 =

nkTi

ωci
;

electron viscosity ηe
0 = 0.73nkTeτe; ηe

1 = 0.51
nkTe

ω 2
ceτe

; ηe
2 = 2.0

nkTe

ω 2
ceτe

;

ηe
3 = −nkTe

2ωce

; ηe
4 = −nkTe

ωce

.

For both species the rate-of-strain tensor is defined as

Wjk =
∂vj

∂xk

+
∂vk

∂xj

− 2

3
δjk∇ · v.

When B = 0 the following simplifications occur:

Ru = nej/σ‖; RT = −0.71n∇(kTe); qi = −κi
‖∇(kTi);

qe
u

= 0.71nkTeu; qe
T = −κe

‖∇(kTe); Pjk = −η0Wjk.

For ωceτe ≫ 1 ≫ ωciτi, the electrons obey the high-field expressions and the
ions obey the zero-field expressions.

Collisional transport theory is applicable when (1) macroscopic time rates
of change satisfy d/dt ≪ 1/τ , where τ is the longest collisional time scale, and
(in the absence of a magnetic field) (2) macroscopic length scales L satisfy L ≫
l, where l = v̄τ is the mean free path. In a strong field, ωceτ ≫ 1, condition
(2) is replaced by L‖ ≫ l and L⊥ ≫

√
lre (L⊥ ≫ re in a uniform field),

where L‖ is a macroscopic scale parallel to the field B and L⊥ is the smaller

of B/|∇⊥B| and the transverse plasma dimension. In addition, the standard
transport coefficients are valid only when (3) the Coulomb logarithm satisfies

λ ≫ 1; (4) the electron gyroradius satisfies re ≫ λD , or 8πnemec
2 ≫ B2; (5)

relative drifts u = vα − vβ between two species are small compared with the

thermal velocities, i.e., u2 ≪ kTα/mα, kTβ/mβ ; and (6) anomalous transport
processes owing to microinstabilities are negligible.
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Weakly Ionized Plasmas

Collision frequency for scattering of charged particles of species α by
neutrals is

να = n0σ
α|0
s (kTα/mα)1/2,

where n0 is the neutral density and σα\0
s is the cross section, typically ∼

5 × 10−15 cm2 and weakly dependent on temperature.
When the system is small compared with a Debye length, L ≪ λD , the

charged particle diffusion coefficients are

Dα = kTα/mανα,

In the opposite limit, both species diffuse at the ambipolar rate

DA =
µiDe − µeDi

µi − µe
=

(Ti + Te)DiDe

TiDe + TeDi
,

where µα = eα/mανα is the mobility. The conductivity σα satisfies σα =
nαeαµα.

In the presence of a magnetic field B the scalars µ and σ become tensors,

J
α

= σσ
α · E = σ

α
‖ E‖ + σ

α
⊥E⊥ + σ

α
∧E × b,

where b = B/B and

σα
‖ = nαeα

2/mανα;

σα
⊥ = σα

‖ να
2/(να

2 + ω 2
cα);

σ
α
∧ = σ

α
‖ ναωcα/(να

2
+ ω

2
cα).

Here σ⊥ and σ∧ are the Pedersen and Hall conductivities, respectively.
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IONOSPHERIC PARAMETERS23

The following tables give average nighttime values. Where two numbers
are entered, the first refers to the lower and the second to the upper portion
of the layer.

Quantity E Region F Region

Altitude (km) 90–160 160–500

Number density (m−3) 1.5 × 1010–3.0 × 1010 5 × 1010–2 × 1011

Height-integrated number 9 × 1014 4.5 × 1015

density (m−2)

Ion-neutral collision 2 × 103–102 0.5–0.05

frequency (sec−1)

Ion gyro-/collision 0.09–2.0 4.6 × 102–5.0 × 103

frequency ratio κi

Ion Pederson factor 0.09–0.5 2.2 × 10−3–2 × 10−4

κi/(1 + κi
2)

Ion Hall factor 8 × 10−4–0.8 1.0

κi
2/(1 + κi

2)

Electron-neutral collision 1.5 × 104–9.0 × 102 80–10

frequency

Electron gyro-/collision 4.1 × 102–6.9 × 103 7.8 × 104–6.2 × 105

frequency ratio κe

Electron Pedersen factor 2.7 × 10−3–1.5 × 10−4 10−5–1.5 × 10−6

κe/(1 + κe
2)

Electron Hall factor 1.0 1.0

κe
2/(1 + κe

2)

Mean molecular weight 28–26 22–16

Ion gyrofrequency (sec−1) 180–190 230–300

Neutral diffusion 30–5 × 103 105

coefficient (m2 sec−1)

The terrestrial magnetic field in the lower ionosphere at equatorial latti-
tudes is approximately B0 = 0.35×10−4 tesla. The earth’s radius is RE = 6371
km.
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SOLAR PHYSICS PARAMETERS24

Parameter Symbol Value Units

Total mass M⊙ 1.99 × 1033 g

Radius R⊙ 6.96 × 1010 cm

Surface gravity g⊙ 2.74 × 104 cm s−2

Escape speed v∞ 6.18 × 107 cm s−1

Upward mass flux in spicules — 1.6 × 10−9 g cm−2 s−1

Vertically integrated atmospheric density — 4.28 g cm−2

Sunspot magnetic field strength Bmax 2500–3500 G

Surface effective temperature T0 5770 K

Radiant power L⊙ 3.83 × 1033 erg s−1

Radiant flux density F 6.28 × 1010 erg cm−2s−1

Optical depth at 500 nm, measured τ5 0.99 —

from photosphere

Astronomical unit (radius of earth’s orbit) AU 1.50 × 1013 cm

Solar constant (intensity at 1AU) f 1.36 × 106 erg cm−2 s−1

Chromosphere and Corona25

Quiet Coronal Active
Parameter (Units) Sun Hole Region

Chromospheric radiation losses

(erg cm−2 s−1)

Low chromosphere 2 × 106 2 × 106 >∼ 107

Middle chromosphere 2 × 106 2 × 106 107

Upper chromosphere 3 × 105 3 × 105 2 × 106

Total 4 × 106 4 × 106 >∼ 2 × 107

Transition layer pressure (dyne cm−2) 0.2 0.07 2

Coronal temperature (K) at 1.1 R⊙ 1.1–1.6 × 106 106 2.5 × 106

Coronal energy losses (erg cm−2 s−1)

Conduction 2 × 105 6 × 104 105–107

Radiation 105 104 5 × 106

Solar Wind <∼ 5 × 104 7 × 105 < 105

Total 3 × 105 8 × 105 107

Solar wind mass loss (g cm−2 s−1) <∼ 2 × 10−11 2 × 10−10 < 4 × 10−11
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THERMONUCLEAR FUSION26

Natural abundance of isotopes:

hydrogen nD/nH = 1.5 × 10−4

helium nHe3/nHe4 = 1.3 × 10−6

lithium nLi6/nLi7 = 0.08

Mass ratios: me/mD = 2.72 × 10−4 = 1/3670

(me/mD)1/2= 1.65 × 10−2 = 1/60.6

me/mT = 1.82 × 10−4 = 1/5496

(me/mT )1/2= 1.35 × 10−2 = 1/74.1

Absorbed radiation dose is measured in rads: 1 rad = 102 erg g−1. The curie
(abbreviated Ci) is a measure of radioactivity: 1 curie = 3.7×1010 counts sec−1.

Fusion reactions (branching ratios are correct for energies near the cross section
peaks; a negative yield means the reaction is endothermic):27

(1a) D + D −−−−→
50%

T(1.01 MeV) + p(3.02 MeV)

(1b) −−−−→
50%

He3(0.82 MeV) + n(2.45 MeV)

(2) D + T −−−−→He4(3.5 MeV) + n(14.1 MeV)

(3) D + He3−−−−→He4(3.6 MeV) + p(14.7 MeV)

(4) T + T −−−−→He4 + 2n + 11.3 MeV

(5a) He3 + T−−−−→
51%

He4 + p + n + 12.1 MeV

(5b) −−−−→
43%

He4(4.8 MeV) + D(9.5 MeV)

(5c) −−−−→
6%

He5(2.4 MeV) + p(11.9 MeV)

(6) p + Li6 −−−−→He4(1.7 MeV) + He3(2.3MeV)

(7a) p + Li7 −−−−→
20%

2 He4 + 17.3 MeV

(7b) −−−−→
80%

Be7 + n − 1.6 MeV

(8) D + Li6 −−−−→2He4 + 22.4 MeV

(9) p + B11 −−−−→3 He4 + 8.7 MeV

(10) n + Li6 −−−−→He4(2.1 MeV) + T(2.7MeV)

The total cross section in barns (1 barn = 10−24 cm2) as a function of E, the
energy in keV of the incident particle [the first ion on the left side of Eqs.
(1)–(5)], assuming the target ion at rest, can be fitted by28

σT (E) =
A5 +

[
(A4 − A3E)2 + 1

]−1
A2

E
[
exp(A1E−1/2) − 1

]
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where the Duane coefficients Aj for the principle fusion reactions are as follows:

D–D D–D D–T D–He3 T–T T–He3

(1a) (1b) (2) (3) (4) (5a–c)

A1 46.097 47.88 45.95 89.27 38.39 123.1

A2 372 482 50200 25900 448 11250

A3 4.36 × 10−4 3.08 × 10−4 1.368 × 10−2 3.98 × 10−3 1.02 × 10−3 0

A4 1.220 1.177 1.076 1.297 2.09 0

A5 0 0 409 647 0 0

Reaction rates σv (in cm3 sec−1), averaged over Maxwellian distributions:

Temperature D–D D–T D–He3 T–T T–He3

(keV) (1a + 1b) (2) (3) (4) (5a–c)

1.0 1.5 × 10−22 5.5 × 10−21 10−26 3.3 × 10−22 10−28

2.0 5.4 × 10−21 2.6 × 10−19 1.4 × 10−23 7.1 × 10−21 10−25

5.0 1.8 × 10−19 1.3 × 10−17 6.7 × 10−21 1.4 × 10−19 2.1 × 10−22

10.0 1.2 × 10−18 1.1 × 10−16 2.3 × 10−19 7.2 × 10−19 1.2 × 10−20

20.0 5.2 × 10−18 4.2 × 10−16 3.8 × 10−18 2.5 × 10−18 2.6 × 10−19

50.0 2.1 × 10−17 8.7 × 10−16 5.4 × 10−17 8.7 × 10−18 5.3 × 10−18

100.0 4.5 × 10−17 8.5 × 10−16 1.6 × 10−16 1.9 × 10−17 2.7 × 10−17

200.0 8.8 × 10−17 6.3 × 10−16 2.4 × 10−16 4.2 × 10−17 9.2 × 10−17

500.0 1.8 × 10−16 3.7 × 10−16 2.3 × 10−16 8.4 × 10−17 2.9 × 10−16

1000.0 2.2 × 10−16 2.7 × 10−16 1.8 × 10−16 8.0 × 10−17 5.2 × 10−16

For low energies (T <∼ 25 keV) the data may be represented by

(σv)DD = 2.33 × 10
−14

T
−2/3

exp(−18.76T
−1/3

) cm
3
sec

−1
;

(σv)DT = 3.68 × 10−12T−2/3 exp(−19.94T−1/3) cm3 sec−1,

where T is measured in keV.

The power density released in the form of charged particles is

PDD = 3.3 × 10−13nD
2(σv)DD watt cm−3 (including the subsequent

D–T reaction);

PDT = 5.6 × 10−13nDnT (σv)DT watt cm−3;

PDHe3 = 2.9 × 10−12nDnHe3 (σv)DHe3 watt cm−3.
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RELATIVISTIC ELECTRON BEAMS

Here γ = (1 − β2)−1/2 is the relativistic scaling factor; quantities in
analytic formulas are expressed in SI or cgs units, as indicated; in numerical
formulas, I is in amperes (A), B is in gauss (G), electron linear density N is

in cm−1, and temperature, voltage and energy are in MeV; βz = vz/c; k is
Boltzmann’s constant.

Relativistic electron gyroradius:

re =
mc2

eB
(γ

2 − 1)
1/2

(cgs) = 1.70 × 10
3
(γ

2 − 1)
1/2

B
−1

cm.

Relativistic electron energy:

W = mc2γ = 0.511γ MeV.

Bennett pinch condition:

I2 = 2Nk(Te + Ti)c
2 (cgs) = 3.20 × 10−4N(Te + Ti) A2.

Alfvén-Lawson limit:

IA = (mc
3
/e)βzγ (cgs) = (4πmc/µ0e)βzγ (SI) = 1.70 × 10

4
βzγ A.

The ratio of net current to IA is

I

IA
=
ν

γ
.

Here ν = Nre is the Budker number, where re = e2/mc2 = 2.82 × 10−13 cm
is the classical electron radius. Beam electron number density is

nb = 2.08 × 10
8
Jβ

−1
cm

−3
,

where J is the current density in A cm−2. For a uniform beam of radius a (in
cm),

nb = 6.63 × 10
7
Ia

−2
β
−1

cm
−3
,

and
2re

a
=
ν

γ
.
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Child’s law: (non-relativistic) space-charge-limited current density between
parallel plates with voltage drop V (in MV) and separation d (in cm) is

J = 2.34 × 103V 3/2d−2 A cm−2.

The saturated parapotential current (magnetically self-limited flow along equi-
potentials in pinched diodes and transmission lines) is29

Ip = 8.5 × 10
3
Gγ ln

[
γ + (γ

2 − 1)
1/2

]
A,

where G is a geometrical factor depending on the diode structure:

G =
w

2πd

for parallel plane cathode and anode

of width w, separation d;

G =

(
ln
R2

R1

)−1

for cylinders of radii R1 (inner) and R2 (outer);

G =
Rc

d0

for conical cathode of radius Rc, maximum

separation d0 (at r = Rc) from plane anode.

For β → 0 (γ → 1), both IA and Ip vanish.

The condition for a longitudinal magnetic field Bz to suppress filamentation
in a beam of current density J (in A cm−2) is

Bz > 47βz(γJ)1/2 G.

Voltage registered by Rogowski coil of minor cross-sectional area A, n turns,
major radius a, inductance L, external resistance R and capacitance C (all in
SI):

externally integrated V = (1/RC)(nAµ0I/2πa);

self-integrating V = (R/L)(nAµ0I/2πa) = RI/n.

X-ray production, target with average atomic number Z (V <∼ 5 MeV):

η ≡ x-ray power/beam power = 7 × 10−4ZV.

X-ray dose at 1 meter generated by an e-beam depositing total charge Q
coulombs while V ≥ 0.84Vmax in material with charge state Z:

D = 150V
2.8

max QZ
1/2

rads.
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BEAM INSTABILITIES30

Name Conditions Saturation Mechanism

Electron- Vd > V̄ej , j = 1, 2 Electron trapping until

electron V̄ej ∼ Vd

Buneman Vd > (M/m)1/3V̄i, Electron trapping until

Vd > V̄e V̄e ∼ Vd

Beam-plasma Vb > (np/nb)
1/3V̄b Trapping of beam electrons

Weak beam- Vb < (np/nb)
1/3V̄b Quasilinear or nonlinear

plasma (mode coupling)

Beam-plasma V̄e > Vb > V̄b Quasilinear or nonlinear

(hot-electron)

Ion acoustic Te ≫ Ti, Vd ≫ Cs Quasilinear, ion tail form-

ation, nonlinear scattering,

or resonance broadening.

Anisotropic Te⊥ > 2Te‖ Isotropization
temperature

(hydro)

Ion cyclotron Vd > 20V̄i (for Ion heating

Te ≈ Ti)

Beam-cyclotron Vd > Cs Resonance broadening

(hydro)

Modified two- Vd < (1 + β)1/2VA, Trapping

stream (hydro) Vd > Cs

Ion-ion (equal U < 2(1 + β)1/2VA Ion trapping

beams)

Ion-ion (equal U < 2Cs Ion trapping

beams)

For nomenclature, see p. 50.
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Parameters of Most Unstable Mode

Name Wave Group

Growth Rate Frequency Number Velocity

Electron-
1

2
ωe 0 0.9

ωe

Vd

0
electron

Buneman 0.7

(
m

M

)1/3

ωe 0.4

(
m

M

)1/3

ωe
ωe

Vd

2

3
Vd

Beam-plasma 0.7

(
nb

np

)1/3

ωe ωe−
ωe

Vb

2

3
Vb

0.4

(
nb

np

)1/3

ωe

Weak beam-
nb

2np

(
Vb

V̄b

)2

ωe ωe
ωe

Vb

3V̄ 2
e

Vbplasma

Beam-plasma

(
nb

np

)1/2 V̄e

Vb

ωe
Vb

V̄e

ωe λ−1
D

Vb

(hot-electron)

Ion acoustic

(
m

M

)1/2

ωi ωi λ−1
D

Cs

Anisotropic Ωe ωe cos θ ∼ Ωe r−1
e V̄e⊥

temperature

(hydro)

Ion cyclotron 0.1Ωi 1.2Ωi r−1
i

1

3
V̄i

Beam-cyclotron 0.7Ωe nΩe 0.7λ−1
D

>∼ Vd;
(hydro) <∼ Cs

Modified two-
1

2
ΩH 0.9ΩH 1.7

ΩH

Vd

1

2
Vd

stream

(hydro)

Ion-ion (equal 0.4ΩH 0 1.2
ΩH

U
0

beams)

Ion-ion (equal 0.4ωi 0 1.2
ωi

U
0

beams)

For nomenclature, see p. 50.
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In the preceding tables, subscripts e, i, d, b, p stand for “electron,” “ion,”
“drift,” “beam,” and “plasma,” respectively. Thermal velocities are denoted
by a bar. In addition, the following are used:

m electron mass re, ri gyroradius
M ion mass β plasma/magnetic energy
V velocity density ratio
T temperature VA Alfvén speed
ne, ni number density Ωe,Ωi gyrofrequency
n harmonic number ΩH hybrid gyrofrequency,

Cs = (Te/M)1/2 ion sound speed ΩH
2 = ΩeΩi

ωe, ωi plasma frequency U relative drift velocity of
λD Debye length two ion species

APPROXIMATE MAGNITUDES

IN SOME TYPICAL PLASMAS

Plasma Type n cm−3 T eV ωpe sec−1 λD cm nλD
3 νei sec−1

Interstellar gas 1 1 6 × 104 7 × 102 4 × 108 7 × 10−5

Gaseous nebula 103 1 2 × 106 20 8 × 106 6 × 10−2

Solar Corona 109 102 2 × 109 2 × 10−1 8 × 106 60

Diffuse hot plasma 1012 102 6 × 1010 7 × 10−3 4 × 105 40

Solar atmosphere, 1014 1 6 × 1011 7 × 10−5 40 2 × 109

gas discharge

Warm plasma 1014 10 6 × 1011 2 × 10−4 8 × 102 107

Hot plasma 1014 102 6 × 1011 7 × 10−4 4 × 104 4 × 106

Thermonuclear 1015 104 2 × 1012 2 × 10−3 8 × 106 5 × 104

plasma

Theta pinch 1016 102 6 × 1012 7 × 10−5 4 × 103 3 × 108

Dense hot plasma 1018 102 6 × 1013 7 × 10−6 4 × 102 2 × 1010

Laser Plasma 1020 102 6 × 1014 7 × 10−7 40 2 × 1012

The diagram (facing) gives comparable information in graphical form.22
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LASERS

System Parameters

Efficiencies and power levels are approximate.31

Power levels available (W)
Type

Wavelength

(µm)
Efficiency

Pulsed CW

CO2 10.6 0.01–0.02 > 2 × 1013 > 105

(pulsed)

CO 5 0.4 > 109 > 100

Holmium 2.06 0.03†–0.1‡ > 107 80

Iodine 1.315 0.003 3 × 1012 –

Nd-glass 1.06 – 1.25 × 1015 –

Nd:YAG 1.064 – 109 > 104

Nd:YLF 1.045, – 4 × 108 80
1.54,1.313

Nd:YVO4 1.064 – – > 20

Er:YAG 2.94 – 1.5 × 105 –

*Color center 1–4 10−3 5 × 108 1

*Ti:Sapphire 0.7–1.5 0.4 × ηp 1014 150

Ruby 0.6943 < 10−3 1010 1

He-Ne 0.6328 10−4 – 1–50×10−3

*Argon ion 0.45–0.60 10−3 5 × 104 150

*OPO 0.3–10 > 0.1 × ηp 1010 5

N2 0.3371 0.001–0.05 106 –

*Dye 0.3–1.1 10−3 5 × 107 > 100

Kr-F 0.26 0.08 1012 500

Xenon 0.175 0.02 > 108 –

Ytterbium fiber 1.05–1.1 0.55 5 × 107 104

Erbium fiber 1.534 – 7 × 106 100

Semiconductor 0.375–1.9 > 0.5 3 × 109 > 103

*Tunable sources †lamp-driven ‡diode-driven

Nd stands for Neodymium; Er stands for Erbium; Ti stands for Titanium;
YAG stands for Yttrium–Aluminum Garnet; YLF stands for Yttrium Lithium
Fluoride; YVO5 stands for Yttrium Vanadate; OPO for Optical Parametric
Oscillator; ηp is pump laser efficiency.
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Formulas

An e-m wave with k ‖ B has an index of refraction given by

n± = [1 − ω
2

pe/ω(ω ∓ ωce)]
1/2

,

where ± refers to the helicity. The rate of change of polarization angle θ as a
function of displacement s (Faraday rotation) is given by

dθ/ds = (k/2)(n− − n+) = 2.36 × 10
4
NBf

−2
cm

−1
,

where N is the electron number density, B is the field strength, and f is the
wave frequency, all in cgs.

The quiver velocity of an electron in an e-m field of angular frequency ω
is

v0 = eEmax/mω = 25.6I1/2λ0 cm sec−1

in terms of the laser flux I = cE 2
max/8π, with I in watt/cm2, laser wavelength

λ0 in µm. The ratio of quiver energy to thermal energy is

Wqu/Wth = mev0
2/2kT = 1.81 × 10−13λ0

2I/T,

where T is given in eV. For example, if I = 1015 W cm−2, λ0 = 1µm, T =
2keV, then Wqu/Wth ≈ 0.1.

Pondermotive force:

FF = N∇〈E2〉/8πNc,

where
Nc = 1.1 × 1021λ0

−2cm−3.

For uniform illumination of a lens with f-number F , the diameter d at
focus (85% of the energy) and the depth of focus l (distance to first zero in
intensity) are given by

d ≈ 2.44Fλθ/θDL and l ≈ ±2F
2
λθ/θDL.

Here θ is the beam divergence containing 85% of energy and θDL is the
diffraction-limited divergence:

θDL = 2.44λ/b,

where b is the aperture. These formulas are modified for nonuniform (such as
Gaussian) illumination of the lens or for pathological laser profiles.
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ATOMIC PHYSICS AND RADIATION

Energies and temperatures are in eV; all other units are cgs except where
noted. Z is the charge state (Z = 0 refers to a neutral atom); the subscript e
labels electrons. N refers to number density, n to principal quantum number.
Asterisk superscripts on level population densities denote local thermodynamic
equilibrium (LTE) values. Thus Nn* is the LTE number density of atoms (or
ions) in level n.

Characteristic atomic collision cross section:

(1) πa0
2 = 8.80 × 10−17 cm2.

Binding energy of outer electron in level labelled by quantum numbers n, l:

(2) E
Z
∞(n, l) = − Z2EH

∞
(n− ∆l)2

,

where EH
∞ = 13.6 eV is the hydrogen ionization energy and ∆l = 0.75l−5,

l >∼ 5, is the quantum defect.

Excitation and Decay

Cross section (Bethe approximation) for electron excitation by dipole
allowed transition m → n (Refs. 32, 33):

(3) σmn = 2.36 × 10−13 fmng(n,m)

ǫ∆Enm

cm2,

where fmn is the oscillator strength, g(n,m) is the Gaunt factor, ǫ is the
incident electron energy, and ∆Enm = En − Em.

Electron excitation rate averaged over Maxwellian velocity distribution, Xmn

= Ne〈σmnv〉 (Refs. 34, 35):

(4) Xmn = 1.6 × 10
−5 fmn〈g(n,m)〉Ne

∆EnmT
1/2
e

exp

(
−∆Enm

Te

)
sec

−1
,

where 〈g(n,m)〉 denotes the thermal averaged Gaunt factor (generally ∼ 1 for
atoms, ∼ 0.2 for ions).
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Rate for electron collisional deexcitation:

(5) Ynm = (Nm*/Nn*)Xmn.

Here Nm*/Nn* = (gm/gn) exp(∆Enm/Te) is the Boltzmann relation for level
population densities, where gn is the statistical weight of level n.

Rate for spontaneous decay n → m (Einstein A coefficient)34

(6) Anm = 4.3 × 10
7
(gm/gn)fmn(∆Enm)

2
sec

−1
.

Intensity emitted per unit volume from the transition n → m in an optically
thin plasma:

(7) Inm = 1.6 × 10−19AnmNn∆Enm watt/cm3.

Condition for steady state in a corona model:

(8) N0Ne〈σ0nv〉 = NnAn0,

where the ground state is labelled by a zero subscript.

Hence for a transition n → m in ions, where 〈g(n, 0)〉 ≈ 0.2,

(9) Inm = 5.1 × 10
−25 fnmgmNeN0

g0T
1/2
e

(
∆Enm

∆En0

)3

exp

(
−∆En0

Te

)
watt

cm3
.

Ionization and Recombination

In a general time-dependent situation the number density of the charge
state Z satisfies

(10)
dN(Z)

dt
= Ne

[
− S(Z)N(Z) − α(Z)N(Z)

+S(Z − 1)N(Z − 1) + α(Z + 1)N(Z + 1)

]
.

Here S(oZ) is the ionization rate. The recombination rate α(Z) has the form
α(Z) = αr(Z) +Neα3(Z), where αr and α3 are the radiative and three-body
recombination rates, respectively.
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Classical ionization cross-section36 for any atomic shell j

(11) σi = 6 × 10−14bjgj(x)/Uj
2 cm2.

Here bj is the number of shell electrons; Uj is the binding energy of the ejected
electron; x = ǫ/Uj , where ǫ is the incident electron energy; and g is a universal
function with a minimum value gmin ≈ 0.2 at x ≈ 4.

Ionization from ion ground state, averaged over Maxwellian electron distribu-
tion, for 0.02 <∼ Te/E

Z
∞ <∼ 100 (Ref. 35):

(12) S(Z) = 10−5 (Te/E
Z
∞)1/2

(EZ
∞)3/2(6.0 + Te/EZ

∞)
exp

(
−E

Z
∞
Te

)
cm3/sec,

where EZ
∞ is the ionization energy.

Electron-ion radiative recombination rate (e+N(Z) → N(Z − 1) + hν)
for Te/Z

2 <∼ 400 eV (Ref. 37):

(13) αr(Z) = 5.2 × 10−14Z

(
EZ

∞
Te

)1/2 [
0.43 +

1

2
ln(EZ

∞/Te)

+0.469(EZ
∞/Te)−1/3

]
cm3/sec.

For 1 eV < Te/Z
2 < 15 eV, this becomes approximately35

(14) αr(Z) = 2.7 × 10
−13

Z
2
Te

−1/2
cm

3
/sec.

Collisional (three-body) recombination rate for singly ionized plasma:38

(15) α3 = 8.75 × 10
−27

Te
−4.5

cm
6
/sec.

Photoionization cross section for ions in level n, l (short-wavelength limit):

(16) σph(n, l) = 1.64 × 10
−16

Z
5
/n

3
K

7+2l
cm

2
,

where K is the wavenumber in Rydbergs (1 Rydberg = 1.0974 × 105 cm−1).
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Ionization Equilibrium Models

Saha equilibrium:39

(17)
NeN1*(Z)

Nn*(Z − 1)
= 6.0 × 10

21 g
Z
1 Te

3/2

gZ−1
n

exp

(
−E

Z
∞(n, l)

Te

)
cm

−3
,

where gZ
n is the statistical weight for level n of charge state Z and EZ

∞(n, l)
is the ionization energy of the neutral atom initially in level (n, l), given by
Eq. (2).

In a steady state at high electron density,

(18)
NeN*(Z)

N*(Z − 1)
=
S(Z − 1)

α3
,

a function only of T .

Conditions for LTE:39

(a) Collisional and radiative excitation rates for a level n must satisfy

(19) Ynm
>∼ 10Anm.

(b) Electron density must satisfy

(20) Ne
>∼ 7 × 1018Z7n−17/2(T/EZ

∞)1/2cm−3.

Steady state condition in corona model:

(21)
N(Z − 1)

N(Z)
=

αr

S(Z − 1)
.

Corona model is applicable if40

(22) 1012tI
−1 < Ne < 1016Te

7/2 cm−3,

where tI is the ionization time.
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Radiation

N. B. Energies and temperatures are in eV; all other quantities are in
cgs units except where noted. Z is the charge state (Z = 0 refers to a neutral
atom); the subscript e labels electrons. N is number density.

Average radiative decay rate of a state with principal quantum number n is

(23) An =
∑

m<n

Anm = 1.6 × 1010Z4n−9/2 sec.

Natural linewidth (∆E in eV):

(24) ∆E∆t = h = 4.14 × 10
−15

eV sec,

where ∆t is the lifetime of the line.

Doppler width:

(25) ∆λ/λ = 7.7 × 10−5(T/µ)1/2,

where µ is the mass of the emitting atom or ion scaled by the proton mass.

Optical depth for a Doppler-broadened line:39

(26) τ = 3.52×10
−13

fnmλ(Mc
2
/kT )

1/2
NL = 5.4×10

−9
fmnλ(µ/T )

1/2
NL,

where fnm is the absorption oscillator strength, λ is the wavelength, and L is
the physical depth of the plasma; M , N , and T are the mass, number density,
and temperature of the absorber; µ is M divided by the proton mass. Optically
thin means τ < 1.

Resonance absorption cross section at center of line:

(27) σλ=λc = 5.6 × 10−13λ2/∆λ cm2.

Wien displacement law (wavelength of maximum black-body emission):

(28) λmax = 2.50 × 10−5T−1 cm.

Radiation from the surface of a black body at temperature T :

(29) W = 1.03 × 105T 4 watt/cm2.
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Bremsstrahlung from hydrogen-like plasma:26

(30) PBr = 1.69 × 10
−32

NeTe
1/2

∑[
Z

2
N(Z)

]
watt/cm

3
,

where the sum is over all ionization states Z.

Bremsstrahlung optical depth:41

(31) τ = 5.0 × 10
−38

NeNiZ
2
gLT

−7/2
,

where g ≈ 1.2 is an average Gaunt factor and L is the physical path length.

Inverse bremsstrahlung absorption coefficient42 for radiation of angular fre-
quency ω:

(32) κ = 3.1 × 10−7Zne
2 ln ΛT−3/2ω−2(1 − ω2

p/ω
2)−1/2 cm−1;

here Λ is the electron thermal velocity divided by V , where V is the larger of

ω and ωp multiplied by the larger of Ze2/kT and h̄/(mkT )1/2.

Recombination (free-bound) radiation:

(33) Pr = 1.69 × 10
−32

NeTe
1/2

∑[
Z

2
N(Z)

(
EZ−1

∞
Te

)]
watt/cm

3
.

Cyclotron radiation26 in magnetic field B:

(34) Pc = 6.21 × 10
−28

B
2
NeTe watt/cm

3
.

For NekTe = NikTi = B2/16π (β = 1, isothermal plasma),26

(35) Pc = 5.00 × 10
−38

N
2
eT

2
e watt/cm

3
.

Cyclotron radiation energy loss e-folding time for a single electron:41

(36) tc ≈ 9.0 × 108B−2

2.5 + γ
sec,

where γ is the kinetic plus rest energy divided by the rest energy mc2.

Number of cyclotron harmonics41 trapped in a medium of finite depth L:

(37) mtr = (57βBL)
1/6

,

where β = 8πNkT/B2.

Line radiation is given by summing Eq. (9) over all species in the plasma.
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ATOMIC SPECTROSCOPY

Spectroscopic notation combines observational and theoretical elements.
Observationally, spectral lines are grouped in series with line spacings which
decrease toward the series limit. Every line can be related theoretically to a
transition between two atomic states, each identified by its quantum numbers.

Ionization levels are indicated by roman numerals. Thus C I is unionized
carbon, C II is singly ionized, etc. The state of a one-electron atom (hydrogen)
or ion (He II, Li III, etc.) is specified by identifying the principal quantum
number n = 1, 2, . . . , the orbital angular momentum l = 0, 1, . . . , n − 1, and
the spin angular momentum s = ± 1

2 . The total angular momentum j is the

magnitude of the vector sum of l and s, j = l ± 1
2 (j ≥ 1

2 ). The letters s,
p, d, f, g, h, i, k, l, . . . , respectively, are associated with angular momenta
l = 0, 1, 2, 3, 4, 5, 6, 7, 8, . . . . The atomic states of hydrogen and hydrogenic
ions are degenerate: neglecting fine structure, their energies depend only on n
according to

En = −R∞hcZ2n−2

1 +m/M
= −RyZ2

n2
,

where h is Planck’s constant, c is the velocity of light, m is the electron mass,
M and Z are the mass and charge state of the nucleus, and

R∞ = 109, 737 cm
−1

is the Rydberg constant. If En is divided by hc, the result is in wavenumber
units. The energy associated with a transition m → n is given by

∆Emn = Ry(1/m2 − 1/n2),

with m < n (m > n) for absorption (emission) lines.

For hydrogen and hydrogenic ions the series of lines belonging to the
transitions m → n have conventional names:

Transition 1 → n 2 → n 3 → n 4 → n 5 → n 6 → n

Name Lyman Balmer Paschen Brackett Pfund Humphreys

Successive lines in any series are denoted α, β, γ, etc. Thus the transition 1 →
3 gives rise to the Lyman-β line. Relativistic effects, quantum electrodynamic
effects (e.g., the Lamb shift), and interactions between the nuclear magnetic
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moment and the magnetic field due to the electron produce small shifts and
splittings, <∼ 10−2 cm−1; these last are called “hyperfine structure.”

In many-electron atoms the electrons are grouped in closed and open
shells, with spectroscopic properties determined mainly by the outer shell.
Shell energies depend primarily on n; the shells corresponding to n = 1, 2,
3, . . . are called K, L, M , etc. A shell is made up of subshells of different
angular momenta, each labeled according to the values of n, l, and the number
of electrons it contains out of the maximum possible number, 2(2l + 1). For
example, 2p5 indicates that there are 5 electrons in the subshell corresponding
to l = 1 (denoted by p) and n = 2.

In the lighter elements the electrons fill up subshells within each shell
in the order s, p, d, etc., and no shell acquires electrons until the lower shells
are full. In the heavier elements this rule does not always hold. But if a
particular subshell is filled in a noble gas, then the same subshell is filled in
the atoms of all elements that come later in the periodic table. The ground
state configurations of the noble gases are as follows:

He 1s2

Ne 1s22s22p6

Ar 1s22s22p63s23p6

Kr 1s22s22p63s23p63d104s24p6

Xe 1s22s22p63s23p63d104s24p64d105s25p6

Rn 1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p6

Alkali metals (Li, Na, K, etc.) resemble hydrogen; their transitions are de-
scribed by giving n and l in the initial and final states for the single outer
(valence) electron.

For general transitions in most atoms the atomic states are specified in
terms of the parity (−1)Σli and the magnitudes of the orbital angular momen-
tum L = Σli, the spin S = Σsi, and the total angular momentum J = L + S,
where all sums are carried out over the unfilled subshells (the filled ones sum
to zero). If a magnetic field is present the projections ML, MS , and M of
L, S, and J along the field are also needed. The quantum numbers satisfy
|ML| ≤ L ≤ νl, |MS | ≤ S ≤ ν/2, and |M | ≤ J ≤ L + S, where ν is the
number of electrons in the unfilled subshell. Upper-case letters S, P, D, etc.,
stand for L = 0, 1, 2, etc., in analogy with the notation for a single electron.
For example, the ground state of Cl is described by 3p5 2Po

3/2. The first part

indicates that there are 5 electrons in the subshell corresponding to n = 3 and
l = 1. (The closed inner subshells 1s22s22p63s2, identical with the configura-
tion of Mg, are usually omitted.) The symbol ‘P’ indicates that the angular
momenta of the outer electrons combine to give L = 1. The prefix ‘2’ repre-
sents the value of the multiplicity 2S+1 (the number of states with nearly the
same energy), which is equivalent to specifying S = 1

2 . The subscript 3/2 is
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the value of J. The superscript ‘o’ indicates that the state has odd parity; it
would be omitted if the state were even.

The notation for excited states is similar. For example, helium has a state
1s2s 3S1 which lies 19.72 eV (159, 856 cm−1) above the ground state 1s2 1S0.
But the two “terms” do not “combine” (transitions between them do not occur)
because this would violate, e.g., the quantum-mechanical selection rule that
the parity must change from odd to even or from even to odd. For electric
dipole transitions (the only ones possible in the long-wavelength limit), other
selection rules are that the value of l of only one electron can change, and only
by ∆l = ±1; ∆S = 0; ∆L = ±1 or 0; and ∆J = ±1 or 0 (but L = 0 does not
combine with L = 0 and J = 0 does not combine with J = 0). Transitions
are possible between the helium ground state (which has S = 0, L = 0, J = 0,
and even parity) and, e.g., the state 1s2p 1Po

1 (with S = 0, L = 1, J = 1,
odd parity, excitation energy 21.22 eV). These rules hold accurately only for
light atoms in the absence of strong electric or magnetic fields. Transitions
that obey the selection rules are called “allowed”; those that do not are called
“forbidden.”

The amount of information needed to adequately characterize a state in-
creases with the number of electrons; this is reflected in the notation. Thus43

O II has an allowed transition between the states 2p23p′
2F o

7/2 and 2p2(1D)3d′ 2F7/2 (and between the states obtained by changing

J from 7/2 to 5/2 in either or both terms). Here both states have two elec-
trons with n = 2 and l = 1; the closed subshells 1s22s2 are not shown. The
outer (n = 3) electron has l = 1 in the first state and l = 2 in the second.
The prime indicates that if the outermost electron were removed by ionization,
the resulting ion would not be in its lowest energy state. The expression (1D)
give the multiplicity and total angular momentum of the “parent” term, i.e.,
the subshell immediately below the valence subshell; this is understood to be
the same in both states. (Grandparents, etc., sometimes have to be specified
in heavier atoms and ions.) Another example43 is the allowed transition from
2p2(3P)3p 2Po

1/2 (or 2Po
3/2) to 2p2(1D)3d′ 2S1/2, in which there is a “spin

flip” (from antiparallel to parallel) in the n = 2, l = 1 subshell, as well as
changes from one state to the other in the value of l for the valence electron
and in L.

The description of fine structure, Stark and Zeeman effects, spectra of
highly ionized or heavy atoms, etc., is more complicated. The most important
difference between optical and X-ray spectra is that the latter involve energy
changes of the inner electrons rather than the outer ones; often several electrons
participate.
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COMPLEX (DUSTY) PLASMAS

Complex (dusty) plasmas (CDPs) may be regarded as a new and unusual
state of matter. CDPs contain charged microparticles (dust grains) in addition
to electrons, ions, and neutral gas. Electrostatic coupling between the grains
can vary over a wide range, so that the states of CDPs can change from weakly
coupled (gaseous) to crystalline. CDPs can be investigated at the kinetic level
(individual particles are easily visualized and relevant time scales are accessi-
ble). CDPs are of interest as a non-Hamiltonian system of interacting particles
and as a means to study generic fundamental physics of self-organization, pat-
tern formation, phase transitions, and scaling. Their discovery has therefore
opened new ways of precision investigations in many-particle physics.

Typical experimental dust properties

grain size (radius) a ≃ 0.3−30 µm, mass md ∼ 3×10−7−3×10−13 g, number

density (in terms of the interparticle distance) nd ∼ ∆−3 ∼ 103 − 107 cm−3,

temperature Td ∼ 3 × 10−2 − 102 eV.

Typical discharge (bulk) plasmas

gas pressure p ∼ 10−2 − 1 Torr, Ti ≃ Tn ≃ 3 × 10−2 eV, vTi
≃ 7 × 104 cm/s

(Ar), Te ∼ 0.3 − 3 eV, ni ≃ ne ∼ 108 − 1010 cm−3, screening length λD ≃
λDi ∼ 20− 200 µm, ωpi ≃ 2× 106 − 2× 107 s−1 (Ar). B fields up to B ∼ 3 T.

Dimensionless

Havnes parameter P = |Z|nd/ne

normalized charge z = |Z|e2/kTea

dust-dust scattering parameter βd = Z2e2/kTdλD

dust-plasma scattering parameter βe,i = |Z|e2/kTe,iλD

coupling parameter Γ = (Z2e2/kTd∆) exp(−∆/λD)

lattice parameter κ = ∆/λD

particle parameter α = a/∆

lattice magnetization parameter µ = ∆/rd

Typical experimental values: P ∼ 10−4−102,z ≃ 2−4 (Z ∼ 103−105 electron

charges), Γ < 103, κ ∼ 0.3 − 10, α ∼ 10−4 − 3 × 10−2, µ < 1

Frequencies

dust plasma frequency ωpd = (4πZ2e2nd/md)1/2

≃ (|Z| P
1+P mi/md)1/2ωpi

charge fluctuation frequency ωch ≃ 1+z√
2π

(a/λD)ωpi

62



dust-gas friction rate νnd ∼ 10a2p/mdvTn

dust gyrofrequency ωcd = ZeB/mdc

Velocities

dust thermal velocity vTd
= (kTd/md)1/2 ≡ [

Td
Ti

mi
md

]1/2vTi

dust acoustic wave velocity CDA = ωpdλD

≃ (|Z| P
1+P mi/md)1/2vTi

dust Alfvén wave velocity vAd = B/(4πndmd)1/2

dust-acoustic Mach number V/CDA

dust magnetic Mach number V/vAd

dust lattice (acoustic) wave velocity Cl,t
DL

= ωpdλDFl,t(κ)

The range of the dust-lattice wavenumbers is K∆ < π The functions Fl,t(κ)

for longitudinal and transverse waves can be approximated44,45 with accuracy
< 1% in the range κ ≤ 5:

Fl ≃ 2.70κ1/2(1 − 0.096κ − 0.004κ2), Ft ≃ 0.51κ(1 − 0.039κ2),

Lengths

frictional dissipation length Lν = vTd
/νnd

dust Coulomb radius RCe,i = |Z|e2/kTe,i

dust gyroradius rd = vTd
/ωcd

Grain Charging

The charge evolution equation is d|Z|/dt = Ii − Ie. From orbital motion
limited (OML) theory46 in the collisionless limit len(in) ≫ λD ≫ a:

Ie =
√

8πa2nevTe exp(−z), Ii =
√

8πa2nivTi

(
1 +

Te

Ti

z

)
.

Grains are charged negatively. The grain charge can vary in response to spatial
and temporal variations of the plasma. Charge fluctuations are always present,
with frequency ωch. Other charging mechanisms are photoemission, secondary
emission, thermionic emission, field emission, etc. Charged dust grains change
the plasma composition, keeping quasineutrality. A measure of this is the
Havnes parameter P = |Z|nd/ne. The balance of Ie and Ii yields

exp(−z) =

(
mi

me

Ti

Te

)1/2 (
1 +

Te

Ti

z

)
[1 + P (z)]
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When the relative charge density of dust is large, P ≫ 1, the grain charge Z
monotonically decreases.

Forces and momentum transfer

In addition to the usual electromagnetic forces, grains in complex plasmas are
also subject to: gravity force Fg = mdg; thermophoretic force

Fth = − 4
√

2π

15
(a2/vTn )κn∇Tn

(where κn is the coefficient of gas thermal conductivity); forces associated
with the momentum transfer from other species, Fα = −mdναdVαd, i.e.,
neutral, ion, and electron drag. For collisions between charged particles, two
limiting cases are distinguished by the magnitude of the scattering parameter
βα. When βα ≪ 1 the result is independent of the sign of the potential. When
βα ≫ 1, the results for repulsive and attractive interaction potentials are
different. For typical complex plasmas the hierarchy of scattering parameters
is βe(∼ 0.01 − 0.3) ≪ βi(∼ 1 − 30) ≪ βd(∼ 103 − 3 × 104). The generic
expressions for different types of collisions are47

ναd = (4
√

2π/3)(mα/md)a
2
nαvTαΦαd

Electron-dust collisions

Φed ≃ 1

2
z2Λed βe ≪ 1

Ion-dust collisions

Φid =

{
1
2 z

2(Te/Ti)
2Λid βi < 5

2(λD/a)
2(ln2 βi + 2 ln βi + 2), βi > 13

Dust-dust collisons

Φdd =

{
z2dΛdd βd ≪ 1

(λD/a)
2[ln 4βd − ln ln 4βd], βd ≫ 1

where zd ≡ Z2e2/akTd.

For νdd ∼ νnd the complex plasma is in a two-phase state, and for νnd ≫ νdd

we have merely tracer particles (dust-neutral gas interaction dominates). The
momentum transfer cross section is proportional to the Coulomb logarithm
Λαd when the Coulomb scattering theory is applicable. It is determined by
integration over the impact parameters, from ρmin to ρmax. ρmin is due to finite
grain size and is given by OML theory. ρmax = λD for repulsive interaction

(applicable for βα ≪ 1), and ρmax = λD(1+2βα)1/2 for attractive interaction
(applicable up to βα < 5).
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For repulsive interaction (electron-dust and dust-dust)

Λαd = zα

∫ ∞

0

e−zαx ln[1 + 4(λD/aα)2x2]dx− 2zα

∫ ∞

1

e−zαx ln(2x− 1)dx,

where ze = z, ae = a, and ad = 2a.

For ion-dust (attraction)

Λid ≃ z

∫ ∞

0

e−zx ln

[
1 + 2(Ti/Te)(λD/a)x

1 + 2(Ti/Te)x

]
dx.

For νdd ≫ νnd the complex plasma behaves like a one phase system (dust-dust
interaction dominates).

Phase Diagram of Complex Plasmas

The figure below represents different “phase states” of CDPs as functions of
the electrostatic coupling parameter Γ and κ or α, respectively. The verti-
cal dashed line at κ = 1 conditionally divides the system into Coulomb and
Yukawa parts. With respect to the usual plasma phase, in the diagram be-
low the complex plasmas are “located” mostly in the strong coupling regime
(equivalent to the top left corner).

Regions I (V) represent Coulomb (Yukawa) crystals, the crystallization condi-

tion is48 Γ > 106(1 + κ+ κ2/2)−1. Regions II (VI) are for Coulomb (Yukawa)
non-ideal plasmas – the characteristic range of dust-dust interaction (in terms
of the momentum transfer) is larger than the intergrain distance (in terms of

the Wigner-Seitz radius), (σ/π)1/2 > (4π/3)−1/3∆, which implies that the
interaction is essentially multiparticle.

Regions III (VII and VIII) correspond to
Coulomb (Yukawa) ideal gases. The range
of dust-dust interaction is smaller than the
intergrain distance and only pair collisions
are important. In addition, in the region
VIII the pair Yukawa interaction asymp-
totically reduces to the hard sphere limit,
forming a “Yukawa granular medium”. In
region IV the electrostatic interaction is
unimportant and the system is like a uaual
granular medium.
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